Predict+Optimize (P+0O)

* Aim to incorporate OPs into the loss function
* Most focus on unknown parameters only in objectives
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Loss function: Regret ([Demirovi ¢ et al., 2019 & 2022]):
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Prior Work [Hu et al., AAAI 2023]

* The first & only approach for unknowns in constraints
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Limitations: Correction function
1. Problem-specific and manually-designed

—1 2. Difficult to give a general training method O
0

solution 1s feasible but not good

Two-Stage P+O VS Hu et al. framework

3. Fails to handle the case when estimated O{;O

Two-Stage P+O | Hu et al. framework

Correction function No Yes
Penalty function Yes Yes
Infeasible Correct into feasible solutions
estimated solutions

Feasible Modify into better No change
estimated solutions solutions

Proposition A. 1.

* @Given the same penalty function and prediction model

* Two-Stage P+O always outputs as least as good a
corrected solution as the Hu et al. framework using any

correction function
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Problem: Optimization problems (OPs)
with unknowns is challenging, especially
when the unknowns are in the constraints

Given:

* Features

* Historical data (features, true parameters)
Predict unknown parameters and solve the OP

Challenge:.
Solutions solved from predicted parameters
may be infeasible under true setting

Contribution 1: A conceptually simple and
powerful framework

In certain applications, the estimated solution can be modified

once the true parameters are revealed
Correction process

Estimated
solution with potential SRS

Loss function: Post-hoc regret [Hu et al., AAAI 2023]
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“Stage 2” OP:
Stage 1 Stage 2
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Let: x™ (optimal solution)
6 (true parameters)
0 (estimated parameters)

Original OP:
x*(0) = argmin obj(x,0) s.t.C(x,0)
X

obj (objective function)
C (constraints)

Stage 1 OP: original OP using estimated parameters

— arg;nin obj(x, @) S.t. C(x, @)

Stage 2 OP: augment original OP by adding a penalty term
_ arg;nin obj(x,0) + Pen—> x,0) s.t.C(x,8)

The Pipeline
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Goal:
Good estimated
solutions under
true parameters

What kind of loss
should we use to
get better estimated solution?

Example: knapsack problem with unknown weights
If estimated weights are all 0
—> Estimated solution: select all items (may be infeasible)

Contribution 2: A general training method

More general.
* [Hu et al., AAAI 2023]: only for packing/covering LPs
* Proposed: for mixed integer linear programs (MILPs)

MILP in the standard form:

x* =argminc’x s.t.Ax =b,Gx > h,x >0,x, €EZ
X

Aim: train a neural network using Post-hoc regret

Main challenge: backward propagation

Let: w, (edge e weight in the neural network)
dPReg (67, 9)
dw,
B JdPRe g(@, 9)

In the case of ax;
MILP, easily
calculable
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Calculated by
standard back

0x{ ) | propagation

aPReg(é, 9)
0x; Gl
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Challenging:
MILP optima may not change
under minor parameter perturbations
—> Uninformative gradients
(0 or non-existent)

Our approach: define a surrogate loss, using x; and x,
solved from a convex relaxation of the original MILP:

x* = argminc’x — ln(xl) ,uz In(s;)

X,S

s.t.Ax = b,Gx —s = h

Selected Experimental Results

Experimental comparison on two frameworks:
* Two-Stage P+O always outperforms Hu et al. framework

—_—
—

—_—
—_

I ONNNNNNNNNNNNN

NONNNNNNNNN

—
I |
—_—
—_—
—_—

tof
0.4- ‘
4

NNNNNNNN S
ONNNNNNNNNN

Normalized Post-hoc Regret

NN

0.2

A
?

o-Stage P+0O framework
Hu et al. framework

AN NONNNANNNNNNNNN

BN N NNNNNNNN NN
O N NNNNNNNNNN gy

IO\

IO\ N NNNNNNNN
FONNNNNNNNNY,
e N\ NNNNNNC

LN N NNNNNNN

0.0

N
¥
i

0.25+0.015 0.5+0.015

|_|

O 015 2+ 0 015

.|>
O

015 8+ 0015 0.25+0.015 0.5+0.015 1+0.015 2+0.015 4+0.015 8+0.015
J

Brass production Titanium-alloy production

Figure 1: Framework comparison on the alloy production problem

Solution Quality:
* Always outperform state-of-the-art and classical methods
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Figure 2: Selected experiment results on the brass production problem
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Figure 3: Selected experiment results on the 0-1 knapsack problem
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Figure 4: Selected experiment results on the nurse scheduling problem

Runtime:
* On par with IntOpt-C (state-of-the-art method)
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Figure 5: Average runtime (in seconds) for the alloy production

* Much faster than CombOptNet (state-of-the-art method) & RF
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Figure 6: Average runtime (in seconds) for the 0-1 knapsack problem
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