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Problem: Optimization problems (OPs) 
with unknowns is challenging, especially 
when the unknowns are in the constraints

Given:
• Features
• Historical data (features, true parameters)
Predict unknown parameters and solve the OP

Challenge: 
Solutions solved from predicted parameters
may be infeasible under true setting

Contribution 1: A conceptually simple and 
powerful framework

Contribution 2: A general training method

In certain applications, the estimated solution can be modified 
once the true parameters are revealed
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• Aim to incorporate OPs into the loss function
• Most focus on unknown parameters only in objectives

Loss function: Regret ([Demirovi ́c et al., 2019 & 2022]):
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Loss function: Post-hoc regret [Hu et al., AAAI 2023] 
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Limitations: Correction function
1. Problem-specific and manually-designed 
2. Difficult to give a general training method
3. Fails to handle the case when estimated 

solution is feasible but not good
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More general:
• [Hu et al., AAAI 2023]: only for packing/covering LPs
• Proposed: for mixed integer linear programs (MILPs)

MILP in the standard form:
𝑥∗ = argmin

"
𝑐#𝑥 𝑠. 𝑡. 𝐴𝑥 = 𝑏, 𝐺𝑥 ≥ ℎ, 𝑥 ≥ 0, 𝑥$ ∈ ℤ

Aim: train a neural network using Post-hoc regret
Main challenge: backward propagation
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Our approach: define a surrogate loss, using 𝑥'∗ and 𝑥&∗

solved from a convex relaxation of the original MILP:

𝑥∗ = argmin
",$
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)
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)
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𝑠. 𝑡. 𝐴𝑥 = 𝑏, 𝐺𝑥 − 𝑠 = ℎ

Calculated by 
standard back 
propagation

In the case of 
MILP, easily 

calculable

Challenging:
MILP optima may not change 
under minor parameter perturbations
àUninformative gradients 

(0 or non-existent)

Prior Work [Hu et al., AAAI 2023] 
• The first & only approach for unknowns in constraints
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What kind of loss 
should we use to 

get better estimated solution?

Goal:
Good estimated 
solutions under 
true parameters

The Pipeline

Example: knapsack problem with unknown weights
If estimated weights are all 0 
à Estimated solution: select all items (may be infeasible)
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Let: 𝑥∗ (optimal solution)
𝜃 (true parameters)
%𝜃 (estimated parameters)

𝑜𝑏𝑗 (objective function)
𝐶 (constraints)

Original OP:
𝑥∗ 𝜃 = argmin

"
𝑜𝑏𝑗 𝑥, 𝜃 s.t. 𝐶 𝑥, 𝜃

Stage 1 OP: original OP using estimated parameters

𝑥'∗ = argmin
"

𝑜𝑏𝑗 𝑥, %𝜃 s.t. 𝐶 𝑥, %𝜃

Stage 2 OP: augment original OP by adding a penalty term 

𝑥&∗ = argmin
"

𝑜𝑏𝑗 𝑥, 𝜃 + 𝑃𝑒𝑛 𝑥'∗ → 𝑥, 𝜃 s.t. 𝐶 𝑥, 𝜃
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Core idea: formulate correction process as a “Stage 2” OP 

Comparison

Two-Stage P+O VS Hu et al. framework 

Proposition A.1.
• Given the same penalty function and prediction model
• Two-Stage P+O always outputs as least as good a 

corrected solution as the Hu et al. framework using any 
correction function

Two-Stage P+O Hu et al. framework 
Correction function No Yes
Penalty function Yes Yes
Infeasible 
estimated solutions

Correct into feasible solutions

Feasible 
estimated solutions

Modify into better 
solutions

No change

Experimental comparison on two frameworks:
• Two-Stage P+O always outperforms Hu et al. framework

Figure 1: Framework comparison on the alloy production problem

Selected Experimental Results

Brass production Titanium-alloy production 

Solution Quality: 
• Always outperform state-of-the-art and classical methods

Figure 2: Selected experiment results on the brass production problem

Figure 3: Selected experiment results on the 0-1 knapsack problem

Figure 4: Selected experiment results on the nurse scheduling problem

Runtime: 
• On par with IntOpt-C (state-of-the-art method) 

Figure 5: Average runtime (in seconds) for the alloy production 

Figure 6: Average runtime (in seconds) for the 0-1 knapsack problem

• Much faster than CombOptNet (state-of-the-art method) & RF


