Predict+Optimize (P+O)

- Aim to incorporate OPs into the loss function
- Most focus on unknown parameters only in objectives

Two-Stage P+O VS Hu et al. framework

	Two-Stage P+O	Hu et al. framework
Correction function	No	Yes
Penalty function	Yes	Yes
Infeasible estimated solutions	Correct into feasible solutions	
Feasible estimated solutions	Modify into better solutions	No change

Proposition A.1.

- Given the same penalty function and prediction model
- Two-Stage P+O always outputs as least as good a corrected solution as the Hu et al. framework using any correction function

Two-Stage Predict+Optimize for Mixed Integer Linear Programs with Unknown Parameters in Constraints

Given:

- Features

Challenge:

Solutions solved from *predicted* parameters may be infeasible under true setting

Contribution 1: A conceptually simple and powerful framework

In certain applications, the estimated solution can be modified once the true parameters are revealed

Xinyi Hu¹, Jasper C.H. Lee², Jimmy H.M. Lee¹ ¹ The Chinese University of Hong Kong ² University of Wisconsin–Madison

Features

The Pipeline

Historical data

Problem: Optimization problems (OPs) with unknowns is challenging, especially when the unknowns are in the constraints

• Historical data (features, true parameters) *Predict* unknown parameters and solve the OP

Example: knapsack problem with unknown weights If estimated weights are all 0

Predict

model

Prediction

What kind of loss

should we use to

get better estimated solution?

 \rightarrow Estimated solution: select all items (may be infeasible)

Contribution 2: A general training method

More general:

• [Hu et al., AAAI 2023]: only for packing/covering LPs

Estimated

parameters

 $\rightarrow OP$

• Proposed: for mixed integer linear programs (MILPs)

MILP in the standard form:

 $x^* = \operatorname{argmin} c^T x \ s.t. Ax = b, Gx \ge h, x \ge 0, x_s \in \mathbb{Z}$

Aim: train a neural network using Post-hoc regret

Main challenge: backward propagation

Let: w_e (edge *e* weight in the neural network)

MILP optima may not change under minor parameter perturbations \rightarrow Uninformative gradients (0 or non-existent)

Our approach: define a surrogate loss, using x_1^* and x_2^* solved from a convex relaxation of the original MILP:

$$x^* = \underset{x,s}{\operatorname{argmin}} c^T x - \mu \sum_{i} \ln(x_i) - \mu \sum_{i} \ln(s_i) dx_i$$

s.t. $Ax = b, Gx - s = h$

$$obj(x,\hat{\theta})$$
 s.t. $C(x,\hat{\theta})$

Figure 6: Average runtime (in seconds) for the 0-1 knapsack problem