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Abstract

Consider the setting of constrained optimization, with some parameters unknown
at solving time and requiring prediction from relevant features. Predict+Optimize
is a recent framework for end-to-end training supervised learning models for
such predictions, incorporating information about the optimization problem in the
training process in order to yield better predictions in terms of the quality of the
predicted solution under the true parameters. Almost all prior works have focused
on the special case where the unknowns appear only in the optimization objective
and not the constraints. Hu et al. proposed the first adaptation of Predict+Optimize
to handle unknowns appearing in constraints, but the framework has somewhat
ad-hoc elements, and they provided a training algorithm only for covering and
packing linear programs. In this work, we give a new simpler and more powerful
framework called Two-Stage Predict+Optimize, which we believe should be the
canonical framework for the Predict+Optimize setting. We also give a training
algorithm usable for all mixed integer linear programs, vastly generalizing the
applicability of the framework. Experimental results demonstrate the superior
prediction performance of our training framework over all classical and state-of-
the-art methods.

1 Introduction

Optimization problems are prevalent in modern society, and yet the problem parameters are not
always available at the time of solving. For example, consider the real-world application scenario
of stocking a store: as store managers, we need to place monthly orders for products to stock in the
store. We want to stock products that sell fast and yield high profits, as much of them as possible,
subject to the hard constraint of limited storage space. However, orders need to be placed two weeks
in advance of the monthly delivery, and the customer demand next month cannot be known exactly
at the time of order placement. In this paper, we consider the supervised learning setting, where
the unknown parameters can be predicted from relevant features, and there are sufficient historical
(features, parameters) pairs as training data for a prediction model. The goal, then, is to learn a
prediction model from the training data such that, if we plug in the estimated parameters into the
optimization problem and solve for an estimated solution, the estimated solution remains a good
solution even after the true parameters are revealed.

The classic approach to the problem would be to train a simple regression model, based on standard
losses such as (regularized) `2 loss, to predict parameters from the features. It is shown, however, that
having a small prediction error in the parameter space does not necessarily mean that the estimated
solution performs well under the true parameters. The recent framework of Predict+Optimize, by
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Elmachtoub and Grigas [7], instead proposes the more effective regret loss for training, which
compares the solution qualities of the true optimal solution and the estimated solution under the
true parameters. Subsequent works [6, 8, 10, 13, 17, 19, 27] have since appeared in the literature,
applying the framework to more and wider classes of optimization problems as well as focusing on
speed-vs-prediction accuracy tradeoffs.

However, all these prior works focus only on the case where the unknown parameters appear in the
optimization objective, and not in the constraints. The technical challenge for the generalization
is immediate: if there were unknown parameters in the constraints, the estimated solution might
not even be feasible under the true parameters revealed afterwards! Thus, in order to tackle the
Predict+Optimize setting with unknowns in constraints, the recent work of Hu et al. [12] presents
the first such adaptation on the framework: they view the estimated solution as representing a
soft commitment. Once the true parameters are revealed, corrective action can be taken to ensure
feasibility, potentially at a penalty corresponding to the real-life cost of (partially) reneging on a soft
commitment. Their framework captures application scenarios whenever such correction is possible,
and requires the practitioner to specify both the correction mechanism and the penalty function. These
data can be determined and derived from the specific application scenario. As an example, in the
product-stocking problem, an additional unknown parameter is the storage space, because it depends
on how the current products in the store sell before the new order arrives. We need to place orders
two weeks ahead based on predicted storage space. The night before the order arrives, we know
the precise available space, meaning that the unknown parameter is revealed. A possible correction
mechanism then is to throw away excess products that the store cannot keep, while incurring the
penalty that is the retail price of the products, as well as disposal fees.

While the Hu et al. [12] framework does capture many application scenarios, there are important
shortcomings. In their framework, they require the practitioner to specify a correction function
that amends an infeasible solution into a feasible solution. However, the derivation of a correction
function can be rather ad-hoc in nature. In particular, given an infeasible estimated solution, there
may be many ways to transform the solution into a feasible one, and yet their framework requires
the practitioner to pick one particular way. This leads to the second downside: it is difficult to give a
general algorithmic framework that applies to a wide variety of optimization problems. Hu et al. had
to restrict their attention only to packing and covering linear programs, for which they could propose
a generic correction function. In this work, we aim to vastly generalize the kinds of optimization
problems that Predict+Optimize can tackle under uncertainty in the constraints. In addition, the
approach of Hu et al. fails to handle the interesting situation in which post-hoc correction is still
desirable when the estimated solution is feasible but not good under the true parameters.

Our contributions are three-fold:

• To mitigate the shortcomings of the prior work, we propose and advocate a new framework, which
we call Two-Stage Predict+Optimize1, that is both conceptually simpler and more expressive in terms
of the class of optimization problems it can tackle. The key idea for the new framework is that the
correction function is unnecessary. All that is required is a penalty function that captures the cost of
modifying one solution to another. A penalty function is sufficient for defining a correction process:
we formulate the correction process itself as a “Stage 2” optimization problem, taking the originally
estimated solution as well as the penalty function into account.

• Under this framework, we further propose a general end-to-end training algorithm that applies not
only to packing and covering linear programs, but also to all mixed integer linear programs (MILPs).
We adapt the approach of Mandi and Guns [18] to give a gradient method for training neural networks
to predict parameters from features.

• We apply the proposed method to three benchmarks to demonstrate the superior empirical perfor-
mance over classical and state-of-the-art training methods.

2 Background

In this section, we give basic definitions for optimization problems and the Predict+Optimize setting
[7], and describe the state-of-the-art framework [12] for Predict+Optimize with unknown parameters

1The literature sometimes uses “two-stage" to mean approaches where the prediction is agnostic to the
optimization problem. Here, “two-stage" refers to the soft commitment and the correction.
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in constraints. The theory is stated in terms of minimization but applies of course also to maximization,
upon appropriate negation. Without loss of generality, an optimization problem (OP) P can be defined
as finding:

x
⇤ = argmin

x
obj(x) s.t. C(x)

where x 2 Rd is a vector of decision variables, obj : Rd ! R is a function mapping x to a real
objective value that is to be minimized, and C is a set of constraints that must be satisfied over x. We
call x⇤ an optimal solution and obj(x⇤) the optimal value. A parameterized optimization problem
(Para-OP) P (✓) is an extension of an OP P :

x
⇤(✓) = argmin

x
obj(x, ✓) s.t. C(x, ✓)

where ✓ 2 Rt is a vector of parameters. The objective obj(x, ✓) and constraints C(x, ✓) can both
depend on ✓. When the parameters are known, a Para-OP is just an OP.

In the Predict+Optimize setting [7], the true parameters ✓ 2 Rt for a Para-OP are not known at
solving time, and estimated parameters ✓̂ are used instead. Suppose each parameter is estimated by
m features. The estimation will rely on a machine learning model trained over n observations of a
training data set {(A1

, ✓
1), . . . , (An

, ✓
n)} where A

i 2 Rt⇥m is a feature matrix for ✓i, in order to
yield a prediction function f : Rt⇥m ! Rt predicting parameters ✓̂ = f(A).

Solving the Para-OP using the estimated parameters, we obtain an estimated solution x
⇤(✓̂). When

the unknown parameters appear in constraints, one major challenge is that the feasible region is only
approximated at solving time, and hence the estimated solution may be infeasible under the true
parameters. Fortunately, in certain applications, the estimated solution is not a hard commitment, but
only represents a soft commitment that can be modified once the true parameters are revealed. Hu et
al. [12] propose a Predict+Optimize framework for such applications. The framework is as follows:
i) the unknown parameters are estimated as ✓̂, and an estimated solution x

⇤(✓̂) is solved using the
estimated parameters, ii) the true parameters ✓ are revealed, and if x⇤(✓̂) is infeasible under ✓, it is
amended into a corrected solution x

⇤
corr(✓̂, ✓) while potentially incurring some penalty, and finally

iii) the solution x
⇤
corr(✓̂, ✓) is evaluated according to the sum of both the objective, under the true

parameters ✓, and the incurred penalty from correction.

More formally, a correction function takes an estimated solution x
⇤(✓̂) and true parameters ✓ and

returns a corrected solution x
⇤
corr(✓̂, ✓) that is feasible under ✓. A penalty function Pen(x⇤(✓̂) !

x
⇤
corr(✓̂, ✓)) takes an estimated solution x

⇤(✓̂) and the corrected solution x
⇤
corr(✓̂, ✓) and returns a non-

negative penalty. Both the correction function and the penalty function should be chosen according to
the precise application scenario at hand. The final corrected solution x

⇤
corr(✓̂, ✓) is evaluated using

the post-hoc regret, which is defined with respect to the corrected solution x
⇤
corr(✓̂, ✓) and the penalty

function Pen(x⇤(✓̂) ! x
⇤
corr(✓̂, ✓)). The post-hoc regret is the sum of two terms: (a) the difference

in objective between the true optimal solution x
⇤(✓) and the corrected solution x

⇤
corr(✓̂, ✓) under the

true parameters ✓, and (b) the penalty that the correction process incurs. Mathematically, the post-hoc
regret function PReg(✓̂, ✓) : Rt ⇥ Rt ! R�0 (for minimization problems) is:

PReg(✓̂, ✓) = obj(x⇤
corr(✓̂, ✓), ✓)� obj(x⇤(✓), ✓) + Pen(x⇤(✓̂) ! x

⇤
corr(✓̂, ✓)) (1)

where obj(x⇤
corr(✓̂, ✓), ✓) is the corrected optimal value and obj(x⇤(✓), ✓) is the true optimal value.

Given the post-hoc regret as a loss function, the empirical risk minimization principle dictates that we
choose the prediction function to be the function f from the set of models F attaining the smallest
average post-hoc regret over the training data:

f
⇤ = argmin

f2F

1

n

nX

i=1

PReg(f(Ai), ✓i) (2)

3 Two-stage Predict+Optimize Framework

While the prior work by Hu et al. [12] is the first Predict+Optimize framework for unknowns in
constraints, and is indeed applicable to a good range of applications, it has several shortcomings.
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First, the framework requires mathematically formalizing both a penalty function and a correction
function from the application scenario, and essentially imposes differentiability assumptions on the
correction function for the framework to be usable. The ad-hoc nature of writing down a correction
function limits the practical applicability of the framework. Second, as a result of needing a single
(differentiable) correction function, Hu et al. [12] needed to restrict their attention to only packing
and covering linear programs, in order to derive a general correction function that is applicable to all
the instances. This also significantly limits the immediate applicability of their framework. Third,
their framework only corrects an estimated solution when it is infeasible under the true parameters.
Yet, there are applications where corrections are possible even when the estimated solution were
feasible, but just not very good under the true parameters.

In this paper, we advocate using a simpler yet more powerful framework, which we call Two-Stage
Predict+Optimize, addressing all of the above shortcomings. The simplified perspective will allow us
to discuss more easily how to handle the entire class of mixed integer linear programs (MILPs) instead
of being restricted to just packing and covering linear programs. Since MILPs include all optimization
problems in NP (under a reasonable definition of NP for optimization problems), our framework
is significantly more applicable in practice. We will describe the Two-Stage Predict+Optimize
framework below, and discuss its application to MILPs in the next section.

Our framework is simple: we forgo the idea of a correction function and treat correction itself as
an optimization problem, based on the penalty function, the estimated solution and the revealed
true parameters. Recall the Hu et al. view of Predict+Optimize under uncertainties in constraints:
the estimated solution is a form of soft commitment, which can be modified at a cost once the true
parameters are revealed. The penalty function describes the cost of changing from an estimated
solution to a final solution. The main observation is that, given an estimated solution and the
revealed parameters, we should in fact solve a new optimization problem, formed by applying the true
parameters to the original optimization, and adding the penalty function to the objective. The final
solution from this new optimization thus takes the penalty of correction into account. This approach
yields three immediate advantages. First, the practitioner no longer needs to specify a correction
function, thus reducing the ad-hoc nature of the framework. Second, even feasible solutions are
allowed to be modified after the true parameters are revealed if the penalty of doing so is not infinity.
Third, conditioned on the same penalty function, the solution quality from our two-stage optimization
approach is always at least as good as that from using any correction function. The last advantage is
presented as Proposition A.1.

Now we formally define the Two-Stage Predict+Optimize framework.

I. In Stage 1, the unknown parameters are estimated as ✓̂ from features. The practitioner then solves
the Stage 1 optimization, which is the Para-OP using the estimated parameters, to obtain the Stage 1
solution x

⇤
1. The Stage 1 solution should be interpreted as some form of soft commitment, that we

get to modify in Stage 2 at extra cost/penalty. Assuming the notation of the Para-OP in Section 2, the
Stage 1 OP can be formulated as:

x
⇤
1 = argmin

x
obj(x, ✓̂) s.t. C(x, ✓̂)

II. At the beginning of Stage 2, the true parameters ✓ are revealed. The Stage 2 optimization problem
augments the original Stage 1 problem by adding a penalty term Pen(x⇤

1 ! x
⇤
2, ✓) to the objective,

which accounts for the penalty (modelled from the application scenario) for changing from the
softly-committed Stage 1 solution x

⇤
1 to the new Stage 2 and final solution x

⇤
2. The Stage 2 OP can

then be formulated as:
x
⇤
2 = argmin

x
obj(x, ✓) + Pen(x⇤

1 ! x, ✓) s.t. C(x, ✓)

Solving the Stage 2 problem yields the final Stage 2 “corrected” solution x
⇤
2.

III. The Stage 2 solution x
⇤
2 is evaluated according to the analogous post-hoc regret, as follows:

PReg(✓̂, ✓) = obj(x⇤
2, ✓) + Pen(x⇤

1 ! x
⇤
2, ✓)� obj(x⇤(✓), ✓)

where again, x⇤(✓) is an optimal solution of the Para-OP under the true parameters ✓. Note that the
post-hoc regret depends on all of a) the predicted parameters, b) the induced Stage 1 solution, c) the
true parameters and d) the final Stage 2 solution.

To see this new framework applies in practice, the following example expands on the product-stocking
problem in the introduction.
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Example 1. Consider the product-stocking problem again, where regular orders have to be placed
two weeks ahead of monthly deliveries. Since the available space at the time of delivery is unknown
when we place the regular orders, depending on the sales over the next two weeks, we need to make
a prediction on the available space to make a corresponding order. We learn the predictor using
historical sales records from features such as time-of-year and price. Then, we use the predicted
available space to optimize for the regular order we place. This is the Stage 1 solution.

The night before the order arrives, the unknown constraint parameter, i.e. the precise available space,
is revealed. We can then check if we have over-ordered or under-ordered. In the case of over-ordering,
we would have to call and ask the wholesale company to drop some items from the order. The
company would perhaps allow taking the items off the final bill, but naturally they have a surcharge
for last-minute changes. Similarly, if we under-ordered, we might request the wholesale company to
send us more products, again naturally with a surcharge for last-minute ordering. The updated order
is the Stage 2 decision. The incurred wholesaler surcharges induce the penalty function.

A reader who is familiar with the literature on two-stage optimization problems may note that the
above framework is phrased slightly differently from some other two-stage problem formulations. In
particular, some two-stage frameworks phrase Stage 1 solutions as hard commitments, and include
recourse variables in both stages of optimization to model what changes are made in Stage 2. We
show in Appendix A.1 how our framework can capture this other perspective, and in general discuss
how problem modelling can be done in our new framework.

The reader may also wonder: what about application scenarios where the (Stage 1) estimated solution
is a hard commitment, and there is absolutely no correction/recourse available? In Appendix A.2, we
discuss how our framework is still useful and applicable for learning in these situations.

We also give a more detailed comparison, in Appendix A.3, between our new Two-Stage Pre-
dict+Optimize framework and the prior Hu et al. framework. Technically, if we ignored differen-
tiability issues, the two frameworks are mathematically equivalent in expressiveness. However, we
stress that our new framework is both conceptually simpler and easier to apply to a far wider class
of optimization problems. We show concretely in the next section how to end-to-end train a neural
network for this framework for all MILPs, vastly generalizing the method of Hu et al. which is
restricted to packing and covering (non-integer) linear programs. In addition, Appendix A.3 also
states and proves Proposition A.1, that if we fix an optimization problem, a prediction model and a
penalty function, then the solution quality from our two-stage approach is always at least as good as
using the correction function approach.

4 Two-Stage Predict+Optimize on MILPs

In this section, we describe how to give an end-to-end training method for neural networks to predict
unknown parameters from features, under the Two-Stage Predict+Optimize framework. The following
algorithmic method is applicable whenever both stages of optimization are expressible as MILPs.
Due to the page limit, the discussion in this section is high-level and brief, with all the calculation
details deferred to Appendix B.

The standard way to train a neural network is to use a gradient-based method. In the Two-Stage
Predict+Optimize framework, we use the post-hoc regret PReg as the loss function. Therefore, for
each edge weight we in the neural network, we need to compute the derivative dPReg

dwe
. Using the law

of total derivative, we get

dPReg(✓̂, ✓)

dwe
=

@PReg(✓̂, ✓)

@x
⇤
2

�����
x⇤
1

@x
⇤
2

@x
⇤
1

@x
⇤
1

@✓̂

@✓̂

@we
+

@PReg(✓̂, ✓)

@x
⇤
1

�����
x⇤
2

@x
⇤
1

@✓̂

@✓̂

@we
(3)

As such, we wish to calculate each term on the right hand side.

The easiest term to handle is @✓̂
@we

, since ✓̂ is the neural network output, and so the derivatives

can be directly calculated by standard backpropagation [25]. As for the terms @PReg(✓̂,✓)
@x⇤

2

���
x⇤
1

and

@PReg(✓̂,✓)
@x⇤

1

���
x⇤
2

, they are easily calculable whenever both the optimization objective and penalty

function are smooth, and in fact linear as in the case of MILPs. What remains are the terms @x⇤
2

@x⇤
1

and
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@x⇤
1

@✓̂
. The challenge is that x⇤

2 is the solution of a MILP optimization (Stage 2) that uses x⇤
1 as its

parameters, i.e., differentiate through a MILP. Similarly, x⇤
1 depends on ✓̂ through a MILP (Stage 1).

Since MILP optima may not change under minor parameter perturbations, the gradients can be either
0 or non-existent, which are uninformative. We thus need to compute some approximation in order to
get useful training signals.

Our approach, inspired by the work of Mandi and Guns [18], is to define a new surrogate loss
function P̂Reg that is differentiable and produces informative gradients. Prior works related to
learning unknowns in constraints [1, 2, 27] give ways of differentiating through LPs or LPs with
regularizations. These works can be used in place of the proposed approach. However, experiments
in Appendix E demonstrate that the proposed approach performs at least as well in post-hoc regret
performance as the others, while being faster. We show the construction of the proposed approach
below, and note that it does not have a simple closed form. Nonetheless, we can compute its gradients.

The rest of the section assumes that both stages of optimization are expressible as a MILP in the
following standard form:

x
⇤ = argmin

x
c
>
x s.t. Ax = b,Gx � h, x � 0, xS 2 Z (4)

with decision variables x 2 Rd and problem parameters c 2 Rd, A 2 Rp⇥d, b 2 Rp, G 2 Rq⇥d,
h 2 Rq. The subset of indices S denotes the set of variables that are under integrality constraints.
Since the unknown parameters may appear in any combination of c, A, b,G and h in the Stage 1
optimization for x⇤

1, the surrogate loss function construction needs computable and informative
gradients for all of @x⇤

@c , @x⇤

@A , @x⇤

@b , @x⇤

@G and @x⇤

@h .

We follow the interior-point based approach of Mandi and Guns [18], used also by Hu et al. [12].
Consider the following convex relaxation of (4), for a fixed value of µ � 0:

x
⇤ = argmin

x,s
c
>
x� µ

dX

i=1

ln(xi)� µ

qX

i=1

ln(si) s.t. Ax = b,Gx� s = h (5)

This is a relaxation of (4) by i) dropping all integrality constraints, ii) introducing slack variables
s � 0 to turn Gx � h into Gx � s = h and iii) replacing both the x � 0 and s � 0 constraints
with the logarithm barrier terms in the objective, with multiplier µ � 0. The observation is that the
gradients @x

@c , @x
@A , @x

@b , @x
@G and @x

@h for (5) are all well-defined, computable and informative for a fixed
value of µ � 0: Slater’s condition holds for (5), and so the KKT conditions must be satisfied at the
optimum (x⇤

, s
⇤) of (5). We can thus compute all the relevant gradients via differentiating the KKT

conditions, using the implicit function theorem. We give all the calculation details in Appendix B.

Given the above observation, we then aim to construct the surrogate loss function by replacing the x⇤
1

and x
⇤
2, which are supposed to solved using MILP (4), with a) ex1 that is solved from program (5)

relaxation of the Stage 1 optimization problem, using the predicted parameters ✓̂ and b) ex2 that is
solved from the program (5) relaxed version of Stage 2 optimization, using ex1 and the true parameters
✓. The only remaining question then, is, which values of µ do we use for the two relaxed problems?

Given a MILP in the form of (4), the interior-point based solver of Mandi and Guns [18] generates
and solves (5) for a sequence of decreasing non-negative µ, with a termination condition that µ cannot
be smaller than some cutoff value. Thus, we simply choose the cutoff value to use as “µ” in (5),
which then completes the definition of the surrogate loss P̂Reg.

Algorithmically, we train the neural network on the surrogate loss P̂Reg as follows: given predicted
parameters, we run the Mandi and Guns solver to get the optimal solution (x⇤

, s
⇤) for the final value

of µ. We can then compute the gradient of the output solution with respect to any of the problem
parameters using the calculations in Appendix B, combined with backpropagation, to yield dP̂Reg

dwe

according to Equation (3).

In Appendix C, we give three example application scenarios, along with their penalty functions, that
our training approach can handle. These problems are: a) an alloy production problem, for factory
trying to source ores under uncertainty in chemical compositions in the raw materials, b) a variant of
the classic 0-1 knapsack with unknown weights and rewards, and c) a nurse roster scheduling problem
with unknown patient load. We show explicitly in Appendix C how both stages of optimization
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Table 1: Relevant problem sizes of the three benchmarks.

Problem name Brass alloy production Titanium-alloy production 0-1 knapsack Nurse scheduling problem
Dimension of x 10 10 10 315
Number of constraints 12 14 21 846
Number of unknown parameters 20 40 10 21
Number of features (per parameter) 4096 4096 4096 8

can be formulated as MILPs for these applications, and apply the Appendix B calculations to yield
gradient computation formulas for the surrogate loss P̂Reg for these problems.

A limitation of our approach is the requirement that both stages must be expressible as MILPs,
constraining the optimization objectives to be linear in the MILP decision variables. This contrasts
the Hu et al. framework [12] which handles non-linear penalties. We point out that even MILPs can
handle some non-linearity by using extra decision variables: for example, the absolute-value function.
Moreover, the Appendix B gradient calculations can be adapted to handle general differentiable
non-linear objectives. We present only MILPs as a main overarching application for this paper
because of their widespread use in discrete optimization, with readily available solvers.

5 Experimental Evaluation

We evaluate the proposed method2 on three benchmarks described in Section 4 and Appendix C. Table
1 reports the relevant benchmark problem sizes. We compare our method (2S) with the state of the art
Predict+Optimize method, IntOpt-C [12], and 5 classical regression methods [9]: ridge regression
(Ridge), k-nearest neighbors (k-NN), classification and regression tree (CART), random forest (RF),
and neural network (NN). All of these methods use their classic loss function to train the prediction
models. At test time, to ensure the feasibility of the solutions when computing the post-hoc regret,
we perform Stage 2 optimization on the estimated solutions for these classical regression methods
before evaluating the final solution. Additionally, CombOptNet [23] is a different method focusing
on learning unknowns in constraints, but with a different goal and loss function. We experimentally
compare our proposed method with CombOptNet on the 0-1 knapsack benchmark—the only with
available CombOptNet code. We also present a qualitative comparison in Section 6.

In the following experiments, we will need to take care to distinguish two-stage optimization as a
training technique (Section 4) and as an evaluation framework (Section 3). We will denote our training
method as “2S” in the experiments, and when we say “Two-Stage Predict+Optimize” framework,
we always mean it as an evaluation framework. 2S is always evaluated according to the Two-Stage
Predict+Optimize framework. As explained above, we will also evaluate all the classical training
methods using the Two-Stage Predict+Optimize framework. For our comparison with the prior work
of Hu et al. [12], we will also distinguish their training method and evaluation framework. The name
“IntOpt-C” always refers to their training method using their correction function. We will simply
call their evaluation framework the “Hu et al. framework” or with similar phrasing (see Section 2 to
recall details). IntOpt-C will sometimes be evaluated using our new Two-Stage Predict+Optimize
framework, and sometimes the prior framework of Hu et al. [12] using their correction function.

The methods of k-NN, RF, NN, and IntOpt-C as well as 2S have hyperparameters, which we tune via
cross-validation. We include the hyperparameter types and chosen values in Appendix D. In the main
paper we only report the prediction performances. See Appendix H for runtime comparisons.

Alloy Production Problem The alloy production problem is a covering LP, see Appendix C.1 for
the practical motivation and LP model. Since Hu et al. [12] also experimented on this problem, we
use it to compare our 2S method with IntOpt-C [12], using the same dataset and experimental setting.

We conduct experiments on the production of two real alloys: brass and an alloy blend for strength-
ening Titanium. For brass, 2 kinds of metal materials, Cu and Zn, are required [14]. The blend of
the two materials are, proportionally, req = [627.54, 369.72]. For the titanium-strengthening alloy,
4 kinds of metal materials, C, Al, V, and Fe, are required [15]. The blend of the four materials are
proportional to req = [0.8, 60, 40, 2.5]. We use the same real data as that used in IntOpt-C [12] as
numerical values in our experiment instances. In this dataset [23], each unknown metal concentration

2Our implementation is available at https://github.com/Elizabethxyhu/NeurIPS_Two_Stage_Predict-Optimize
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Table 2: Comparison of the Two-Stage Predict+Optimize framework and the Hu et al. framework on
the alloy production problem.

PReg Two-Stage Predict
+Optimize Framework

Hu et al.
FrameworkAlloy Penalty factor

Brass

0.25±0.015 43.87±2.73 68.16±6.26
0.5±0.015 65.71±4.81 82.91±5.45
1±0.015 88.75±5.91 107.64±6.85
2±0.015 123.90±6.84 150.47±12.99
4±0.015 161.86±8.49 178.69±10.09
8±0.015 194.06±13.09 206.84±12.51

Titanium-alloy

0.25±0.015 4.52±0.47 6.45±0.81
0.5±0.015 6.03±0.62 7.90±0.56
1±0.015 8.58±0.74 10.73±0.81
2±0.015 12.17±1.24 14.17±1.31
4±0.015 16.10±1.06 17.48±0.99
8±0.015 19.69±0.91 21.08±1.91

Table 3: Mean post-hoc regrets and standard deviations for the alloy production problem using the
Two-Stage Predict+Optimize framework.

PReg 2S IntOpt-C Ridge k-NN CART RF NN TOVAlloy Penalty factor

Brass

0.25±0.015 43.87±2.73 45.27±3.35 60.80±2.55 63.32±4.39 77.80±6.37 60.85±2.35 64.96±3.58

312.02±6.94

0.5±0.015 65.71±4.81 67.69±4.25 71.12±3.48 74.36±5.69 93.67±7.03 70.86±3.29 74.32±2.90
1±0.015 88.75±5.91 89.83±4.79 91.82±6.41 96.52±8.90 125.50±9.49 90.97±6.14 93.12±4.24
2±0.015 123.90±6.84 125.46±9.26 133.18±12.98 140.77±16.02 189.12±16.10 131.12±12.48 130.67±10.52
4±0.015 161.86±8.49 164.94±10.33 215.87±26.54 229.22±30.74 316.31±30.95 211.40±25.56 205.76±24.33
8±0.015 194.06±13.09 200.42±8.51 381.30±53.75 406.19±60.42 570.75±61.42 372.01±51.82 355.96±52.25

Titanium-alloy

0.25±0.015 4.52±0.47 4.72±0.58 6.43±0.39 6.13±0.34 7.07±0.45 5.75±0.48 6.56±0.59

30.27±0.54

0.5±0.015 6.03±0.62 6.23±0.64 7.71±0.45 7.27±0.39 8.57±0.45 6.76±0.55 7.38±0.67
1±0.015 8.58±0.74 8.71±0.95 10.26±0.62 9.55±0.52 11.57±0.52 8.76±0.72 9.03±0.84
2±0.015 12.17±1.24 12.31±1.31 15.37±1.03 14.11±0.84 17.57±0.80 12.78±1.11 12.34±1.21
4±0.015 16.10±1.06 16.97±1.70 25.60±1.89 23.24±1.56 29.57±1.53 20.81±1.93 18.95±2.00
8±0.015 19.69±0.91 20.80±1.74 46.04±3.65 41.49±3.03 53.57±3.10 36.88±3.63 32.16±3.60

is related to 4096 features. For experiments on both alloys, 350 instances are used for training and
150 instances for testing the model performance. For NN, IntOpt-C, and 2S, we use a 5-layer fully
connected network with 512 neurons per hidden layer.

In the penalty function described in Appendix C.1, we need to choose a penalty factor/multiplier for
each supplier. We conduct experiments on 6 types of penalty factor (�) settings: 6 vectors where
each entry is i.i.d. uniformly sampled from [0.25± 0.015], [0.5± 0.015], [1.0± 0.015], [2.0± 0.015],
[4.0 ± 0.015], and [8.0 ± 0.015] respectively. This random sampling of � ensures that the penalty
factor for each supplier is different, but remains roughly on the same scale.

The first experiment we run compares 2S+Two-Stage Predict+Optimize framework with IntOpt-C+Hu
et al. framework. Specifically, we compare a) using 2S for training and evaluating using the Two-Stage
Predict+Optimize framework in Section 3, versus b) using IntOpt-C for training and evaluating using
the same correction function from training, according to the Hu et al. framework described in Section 2.
Table 2 compares the mean post-hoc regret and standard deviations for the alloy production problem
for the two different frameworks. The table shows that Two-Stage Predict+Optimize framework
always achieves smaller mean post-hoc regret than the Hu et al. framework. Compared with the
Hu et al. framework, our framework obtains 6.18%-35.63% smaller mean post-hoc regret in brass
production, and 6.59%-29.89% smaller mean post-hoc regret in titanium-alloy production.

We present a further comparison in Appendix F with a variant of the Hu et al. framework—the `2

projection idea in [3], which performs even worse than the Hu et al. framework.

The second experiment compares various training approaches all evaluated under the Two-Stage
Predict+Optimize framework. That is, the models are trained differently, but at test time, we always
use Stage 2 optimization to give a final solution and evaluate post-hoc regret on it. Table 3 reports the
mean post-hoc regrets and standard deviations across 10 runs for each training method on the alloy
production problem. The table shows that our method, 2S, achieves the best performance, compared
with IntOpt-C achieving the second best performance, beating all the classical training approaches.
Compared with IntOpt-C, 2S obtains 1.20%-3.18% smaller mean post-hoc regrets in brass production,
and 1.18%-5.33% smaller mean post-hoc regret in titanium-alloy production. Compared with the
classical approaches, the improvements are much more significant. 2S obtains at least 2.44%-45.48%
smaller mean post-hoc regrets in brass production, and at least 1.39%-38.78% smaller mean post-hoc
regret in titanium-alloy production. The average True Optimal Values (TOV) are reported in the last
column of Table 3 for reference, although the reader should take care to not over-interpret the ratio
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Table 4: Mean post-hoc regrets and standard deviations for 0-1 knapsack problem using the Two-Stage
Predict+Optimize framework.

PReg Penalty
factor 2S CombOptNet Ridge k-NN CART RF NN TOV

100
0.21 1.26±0.01 9.45±0.19 9.46±0.19 9.38±0.21 8.67±0.13 9.50±0.26 9.81±0.20

29.68±0.140.25 6.28±0.05 9.60±0.22 9.77±0.19 9.70±0.19 9.19±0.12 9.82±0.27 10.11±0.20
0.3 9.22±0.10 10.45±0.34 10.16±0.19 10.10±0.18 9.85±0.11 10.22±0.28 10.49±0.21

150
0.21 0.73±0.01 8.90±8.97 9.12±0.22 8.91±0.20 8.46±0.18 9.20±0.27 9.66±0.47

40.23±0.190.25 3.64±0.04 9.11±9.41 9.40±0.21 9.19±0.20 8.88±0.17 9.47±0.26 9.92±0.43
0.3 7.27±0.06 9.34±9.38 9.76±0.22 9.53±0.19 9.41±0.17 9.81±0.24 10.23±0.38

200
0.21 0.33±0.01 15.16±0.21 6.57±0.21 6.38±0.29 6.26±0.21 6.59±0.23 7.08±0.95

48.13±0.240.25 1.67±0.03 15.20±0.27 6.80±0.20 6.62±0.29 6.57±0.19 6.82±0.21 7.27±0.88
0.3 3.33±0.06 15.25±0.22 7.09±0.19 6.91±0.28 6.95±0.19 7.10±0.18 7.52±0.80

250
0.21 0.07±0.00 20.42±0.25 2.39±0.22 2.18±0.20 2.45±0.20 2.34±0.32 2.70±1.34

53.43±0.260.25 0.34±0.02 20.47±0.13 2.53±0.21 2.34±0.19 2.60±0.19 2.49±0.30 2.82±1.26
0.3 0.69±0.04 20.54±0.32 2.71±0.20 2.54±0.18 2.79±0.18 2.67±0.28 2.97±1.16

Table 5: Mean post-hoc regrets and standard deviations for the NSP using the Two-Stage Pre-
dict+Optimize framework.

Penalty factor 2S Ridge k-NN CART RF NN TOV
0.25±0.015 3.94±1.91 6.45±4.68 15.20±5.76 26.20±8.96 19.47±7.19 4.27±2.22

190.21±26.17

0.5±0.015 6.92±2.26 12.68±9.35 30.29±11.53 52.47±17.96 38.93±14.42 8.20±4.40
1.0±0.015 13.12±3.15 25.12±18.71 60.43±23.07 105.01±36.00 77.86±28.99 16.00±8.78
2.0±0.015 25.04±9.29 49.95±37.39 120.62±46.08 210.02±72.06 155.64±58.06 31.51±17.40
4.0±0.015 33.29±9.53 99.61±74.78 241.01±92.14 420.04±144.18 311.19±116.23 62.52±34.64
8.0±0.015 46.72±14.80 198.91±149.54 481.79±184.27 840.10±288.45 622.32±232.56 124.54±69.14

between the post-hoc regret and the true optimal value, since the post-hoc regret also includes the
penalty term which increases with the penalty factors.

0-1 knapsack In the second example, we showcase our framework on a packing integer program-
ming problem, a variant of the 0-1 knapsack problem, with unknown item prices pi and sizes si. See
Appendix C.2 for details of an application in running a “proxy buyer” business. Here, the unknown
parameters appear in both the objective and constraints. The proposed 2S method can handle this
MILP straightforwardly, but the IntOpt-C method cannot be applied. Thus, we only experiment with
the Two-Stage Predict+Optimize framework for evaluation, and compare the proposed 2S method
with classical approaches and CombOptNet. Again, all approaches are evaluated at test time using
the Stage 2 optimization to yield the final solution, on which the post-hoc regret is computed.

The MILP formulation of the two stages and the penalty function are described in Appendix C.2.
We use the dataset of Paulus et al. [23], in which each 0-1 knapsack instance consists of 10 items
and each item has 4096 features related to its price and size. For both NN and our method, we use a
5-layer fully-connected network with 512 neurons per hidden layer. We conduct experiments on 4
different knapsack capacities: 100, 150, 200, and 250. We use 700 instances for training and 300
instances for testing the model performance. Considering the real-life setting, we use 3 scales of the
penalty factor for the penalty function in Appendix C.2: � = 0.05, 0.25, or 0.5.

Table 4 reports the mean post-hoc regrets and standard deviations across 10 runs for each approach
on this 0-1 knapsack problem. Due to the space limitation and the fact that larger penalty factors
are unrealistic in this problem setting, we present penalty factors � 1 in Appendix G. The average
True Optimal Values (TOV) are reported in the last column, again for reference. As shown in the
table, our proposed 2S method has significantly better results. In addition, we observe that across
all approaches, the post-hoc regrets decrease as the knapsack capacity increases: this is due to the
fact that as the capacity increases, more and more items can be selected, and so minor inaccuracies
in predicted values/weights do not affect the selected set of items as much. On the other hand, the
advantage of our 2S method over other approaches actually becomes more significant as the capacity
increases, demonstrating the superior accuracy of our approach.

Nurse Scheduling Problem Our last experiment is on the nurse scheduling problem (NSP) with
unknown patients needs, with the goal of scheduling a nurse roster satisfying unknown patient load
demands while minimizing mismatched nurse-shift preferences as the objective. See Appendix C.3
for a description of the application scenario, the MILP formulations of the two stages, as well as the
associated penalty function. Given that NSP is not an LP, IntOpt-C again does not apply, and so we
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only compare the proposed 2S training method with the classical approaches, using the Two-Stage
Predict+Optimize framework for evaluation. Each NSP instance consists of 15 nurses, 7 days, and 3
shifts per day. The nurse preferences are obtained from the NSPLib dataset [26], which is widely
used for NSP [16, 20]. The number of patients that each nurse can serve in one shift is randomly
generated from [10,20], representing the fact that each nurse has different capabilities. Given that we
are unable to find datasets specifically for the patient load demands and relevant prediction features,
we follow the experimental approach of Demirovic et al. [4, 5, 6] and use real data from a different
problem (the ICON scheduling competition) as the numerical values required for our experiment
instances. In this dataset, the unknown number of patients per shift is predicted by 8 features.

Since there are far fewer features than the previous experiments, for both NN and 2S we use a smaller
network structure: a 4-layer fully-connected network with 16 neurons per hidden layer. We use 210
instances for training and 90 instances for testing. Just like the first experiment, we use 6 scales of
penalty factors (see Appendix C.3 for the penalty function): � with i.i.d. entries drawn uniformly
from [0.25± 0.015], [0.5± 0.015], [1.0± 0.015], [2.0± 0.015], [4.0± 0.015], and [8.0± 0.015].

Table 5 reports the mean post-hoc regrets and standard deviations across 10 runs for each approach
on the NSP. The table shows that the proposed 2S method again has the best performance among
all the training approaches. Our 2S method obtains at least 7.61%, 15.65%, 17.99%, 20.51%,
46.76%, and 62.49% smaller post-hoc regret than other classical methods when the penalty factor is
[0.25±0.015], [0.5±0.015], [1.0±0.015], [2.0±0.015], [4.0±0.015], and [8.0±0.015] respectively.

Runtime Analysis Appendix H gives the training times for each method. Most classical approaches
are faster than our 2S method, although as shown their post-hoc regrets are much worse. In alloy
production, the only setting where IntOpt-C applies, its running time is shorter but comparable with
2S. In 0-1 knapsack, the only problem with public CombOptNet code, the 2S method is much faster.

6 Literature Review

Section 1 already summarized prior works in Predict+Optimize, most of which focus on learning
unknowns only in the objective. Only the Hu et al. [12] framework considers unknowns in constraints.

Here we summarize other works related to learning unknowns in optimization problem constraints,
particularly those outside of Predict+Optimize. These works can be placed into two categories.

One category also considers learning unknowns in constraints, but with very different goals and mea-
sures of loss. For example, CombOptNet [23] and Nandwani et al. [21] focus on learning parameters
so as to make the predicted optimal solution (first-stage solution in our proposed framework) as close
to the true optimal solution x

⇤ as possible in the solution space/metric. By contrast, our proposed
framework explicitly formulates the two-stage framework and post-hoc regret in order to directly
capture rewards and costs in application scenarios. Experiments on 0-1 knapsack in Section 5 show
that these other methods yield worse predictive performance when evaluated on the post-hoc regret,
under the proposed two-stage framework.

Another category gives ways to differentiate through LPs or LPs with regularizations, as a technical
component in a gradient-based training algorithm. As mentioned in Section 4, these works can
indeed be used in place of our proposed approach in Section 4/Appendix B. However, we point out
that: (i) these other technical tools are essentially orthogonal to our primary contribution, which
is the two-stage framework (Section 3), and (ii) nonetheless, experiments on the 0-1 knapsack in
Appendix E demonstrate that our gradient calculation approach performs at least as well in post-hoc
regret performance as other works, while being faster.

7 Summary

We proposed Two-Stage Predict+Optimize: a new, conceptually simpler and more powerful framework
for the Predict+Optimize setting where unknown parameters can appear both in the objective and in
constraints. We showed how the simpler perspective offered by the framework allows us to give a
general training framework for all MILPs, contrasting prior work which apply only to covering and
packing LPs. Experimental results demonstrate that our training method offers significantly better
prediction performance over other classical and state-of-the-art approaches.
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[6] E. Demirović, P. J. Stuckey, T. Guns, J. Bailey, C. Leckie, K. Ramamohanarao, and J. Chan.
Dynamic programming for Predict+Optimise. In Proceedings of the Thirty-Fourth AAAI
Conference on Artificial Intelligence, pages 1444–1451, 2020.

[7] A. N. Elmachtoub and P. Grigas. Smart “Predict, then Optimize”. Management Science,
68(1):9–26, 2022.

[8] A. N. Elmachtoub, J. C. N. Liang, and R. McNellis. Decision trees for decision-making under
the predict-then-optimize framework. In Proceedings of the 37th International Conference on
Machine Learning, pages 2858–2867, 2020.

[9] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning. Springer series
in statistics New York, 2001. Volume 1, Number 10.
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