A Pseudocode for Case Studies

This section gives pseudocode implementations for the recursive and iterative algorithmic case studies
in the main paper, which includes i) the Bellman-Ford algorithm for the shortest path problem
(Algorithms 4 and 5), ii) the successive shortest path algorithm for the minimum cost flow problem
(Algorithm 6 and 7), iii) the branching algorithm for the minimum cost vertex covering problem
(Algorithm 8 and 9), and iv) the Johnson’s rule for the multi-stage scheduling problem (Algorithm 10
and 11).

Note that for the Bellman-Ford and successive shortest path algorithms, Branch only generates one
subproblem. Thus it is equivalent to invoking the recursive call on the subproblem directly without
calling the Map function.

A.1 Pseudocode for the Bellman-Ford Algorithm for Shortest Path

Algorithm 4: Bellman-Ford Algorithm for SPP
1 Function ReSolve SPP(G¢ D,s,t, N):

2 if N = 0 then

3 | R« D[t];

4 else

5 D’ «+ Extract_SPP(G% D);

6 [P’] + Branch_SPp(G¢, D' s,t, N —1);
7 R < ReSolve_sSPP(P’);

8 | return R;

9 Function Extract_SPP(G¢, D):

10 for every vertex uw £ vin 'V do

u || D'[v] = min(D[v], Dlu] + (G)uv);
12 | return D’

Algorithm 5: Bellman-Ford Algorithm for Para-SPP
1 Function ReLearn_SPP(GY,, D, s,t, N, Ip):

2 if N = 0 then

3 | R[lo] < D[t}

4 else

5 D! « ExtractL_SPP(GS, D., Io);
6 [P'] <~ BranchL_SPP(G%, D, s,t, N —1);
7 R[Iy] + ReLearn_SPP(P’, Iy);

8 | return R;

9 Function Extractl, SPP(GS, D, Ip):

10 for every vertex w # v in V do

1 | DA [v] = min(D,[v], Dy[u] + (GS)uv)s
12 | return D
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A.2 Pseudocode for the Successive Shortest Path Algorithm for Capacitated Minimum Cost
Flow

Algorithm 6: Successive Shortest Path Algorithm for MCFP

1 Function ReSolve MCFP(GP,G°, F,s,t):

2 if no path from s to t in GP or Z(u,t) F,+ > K then
3 |_ R« Z(u,v) Fuv - (G

4 else

5 T < Extract_MCFP(GP,G%,s,t);

6 [P'] < Branch_MCFP(GP,G°, F,T),

7 R + ReSolve_MCFP(P’);

8 | return R;

9 Function Extract_MCFP(GP,G¢,s,t):

10 for every vertex vin V do

11 for every vertex u # vin 'V do

12 if (G”)yo > 0 then

13 D] + min(Dv], D[u] + (G%)uv);
14 if D[v] = D[u] + (G°), then

15 | Tlv] + u;

16 | return T,
17 Function Branch_MCFP(GP,G¢, F,T):

18 block_flow = oo;

19 for every vertex v on T[] do

20 u <+ Tvl;

21 | block_flow + min(block_flow, Fy,);
22 block_flow « min(block_flow, K — 3, 1y Fut);
23 for every vertex v on T[] do

24 u <+ Tvl;

25 (GP" )y < (GP) oy — block_flow;

26 (GP)yu 4= (GP) o + block_flow;

27 B F!, + Fuy + block_flow;
28 | return (G, G, I, s,);
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Algorithm 7: Successive Shortest Path Algorithm for Para-MCFP
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Function ReLearn MCFP(GP?,GS, F,,s,t,1p):
if no path from s to t in G or i > (u,py(Fy[I])ur = K then
|_ RIO <_E:IE:(uu)( [ ]) ( 'cy)uv’
else
T, < ExtractL_MCFP(G?,GS, s,t,Ip);
for each interval I € I(T,) do
[P'] <~ BranchL_MCFP(GP, G, F,[I], T,[1]);
R[I] < ReLearn_MCFP(P',I);

| return R[[o};

Function ExtractL MCFP(G?,GS, s,t,1p):

for every vertex vinV do

for every vertex w # v in V do

if (G?)y, > 0 then
D, [v] = min(Dy[v], Dy[u] + (G5)uw);
for each interval I € 1(D!) do
if D.,[v] = Dy[u ] (Gc)uv then

\\ | T [I[v] +

| return T,;

Function BranchI, MCFP(GP,GS, I\ [I], T,[1]):

block_flow + oo;
for every vertex v on T, [I][] do
u < Ty [I][v];
| block_flow < min(block_flow, (Fy[I])uv);
lock_flow < min(block_flow, K — 3, Z(uﬂf) (Fy 1)) ut)s
for every vertex v on T, [I][] do
u < Ty [I][v];
(Gp/)uv (Gp)uv - blOCk_flOw;
(Gp/)vu (Gp)’uu + block_flow;

F![Iuy < (F5[I])uw + block_flow;

[1]

return (G, G, FL[I], 5,1, 1);

S
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A.3 Pseudocode for the standard Branching Algorithm for Minimum Cost Vertex Cover

Algorithm 8: Branching Algorithm for MCVC
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Function ReSolve MCVC(G,c,{, n,chosen):

if n = 0 then
if the edges in G are all covered then
R+ 0;
for every vertex v in chosen|[] do
| R R+cfu];
return RR;
else
|_ return oo;
else
[Py, P,] + Branch_MCVC(G, ¢, ¢, n,chosen);
[R1, R2] + Map(ReSolve_MCVC, [Py, P));
| R < Reduce(min,[Ry, Ry]);

return RR;

Function Branch_MCVC(G, ¢, {, n, chosen):
P, + (G,c,t,n — 1, chosen);
Py, +— (G,c,t,n —1,chosen U{n});
return (Py, Ps);

Algorithm 9: Branching Algorithm for Para-MCVC

1

N R S I N

10

11
12
13
14

15

16
17
18
19

Function ReLearn_MCVC(G, ¢y, L, n, chosen., Ij):
if n = 0 then
if the edges in G are all covered then
R[Io] <~ 0;
for every vertex v in chosen, || do
| R[lo]  R[Io] + ey[v];
return R[Iy];

else
R[Io] < 00,
| return R[[o};

Ise
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[P1, P5] < BranchL_MCVC(G, ¢y, £y, n, chosen, Ip);
[R1, R2] + Map(ReLearn_MCVC, [Py, P2]);
| R < Reduce(min, [R, Ra]);

return R;

Function BranchI_MCVC(G,cy, £, n, chosen., Ij):
P, < (G, cy,ty,n —1,chosenn, Iy);
Py« (G, ¢y, ly,n — 1,choseny, U {n}, Iy);
return (P, Py);

A.4 Pseudocode for the Johnson’s rule for Multi-stage Scheduling

Suppose schedule is the current array of the scheduled items which is initialized as an array of
length equal to the total number of items and all elements equal to -1, remainingltems is the
current list of the unscheduled items, and timeReq is the array with two columns, each containing
the processing times of each item on a machine. Throughout the execution of the algorithm, the
form of schedule always maintains the structure of [a, b, ¢] where a is a sub-array of non-(—1)
entries corresponding to actual items, b is a sub-array of only —1 entries, and c is another sub-array
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of non-(—1) entries corresponding to actual items. The recursive algorithm ReSolve_MSS takes
input (n, schedule, remainingltems, timeReq), where n is the remaining number of levels of
recursion. isBaseCase_MSS checks if n = 0, and BaseCase_MSS returns the total elapsed
time for processing all items on both of the two machines. Extract_MSS examines all the entries
of timeReq that correspond to items in remainingltems, and finds the smallest entry. This
entry corresponds to an (item, machine) pair, where machine can be either 1 or 2, and this pair
is returned by Extract_MSS. Given this as input, Branch_MSS first removes the item from
remainingltems, and needs to now insert this item into schedule. The way it does that is simple:
if the entry found by Extract_MSS corresponds to machine 1, it looks for the first -1 entry in
schedule from the beginning of the array and replaces it with item. Otherwise, it instead looks from
the end of the array backwards for the first -1 entry, and replaces it with i¢em. Given this processing,
Branch_MSS returns the single subproblem (n — 1, schedule, remainingltems, timeReq) and
ReSolve_MSS is called recursively.

Correspondingly, the input of ReLearn_MSS is a problem P, parameterized by the free coefficient
v, and the processing time of all items on two machines (the unknown parameters) are expressed
as linear functions of . ExtractL_MSS replaces all arithmetic and min operations by piecewise
linear counterparts, which computes a piecewise data structure 7', mapping intervals (for ) to
different inserted items that with the shortest processing time in the remainingltems list and
different corresponding machine numbers. For each interval I of Ty, Branch_MSS constructs
a subproblem P. by updating schedule and remainingltems using T,[I]. ReLearn_MSS is
recursively called on P/, until the base case is reached.
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Algorithm 10: Johnson’s Rule for MSS

1 Function ReSolve_ MSS(n,schedule, remainingltems,timeReq):
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if n = 0 then
M1Time + O;
M?2Time < 0;
for every item i in schedule]] do
M1Time < M1Time + timeReq[i][1];
if M1Time < M2Time then
| M2Time < M2Time + timeReq[i][2];

else
| M2Time < M1Time + timeReq[i][2];

B R+ M2Time;

else

T + Extract_MsS(remainingltems, timeReq);

[P'] + Branch_MSS(n, schedule, remainingltems, timeReq, T);
| R < ReSolve MSs(P');

return R;

Function Extract_MSS(remainingltems, timeReq):

minProlime < oo;
item + —1;
machine < —1;
for every item i in remainingltems|| do
minProTime + min(minProTime, timeReq[i][1], timeReql[i][2]);
if minProTime = timeReqli][1] then
item < 1
machine < 1;
if minProTime = timeReq[i][2] then
item <— 1
machine < 2;

T <« (item, machine);

return 7;

Function Branch_MSS(n, schedule, remainingltems, timeReq, T):

Remove T.item from remainingltems]];
if T'machine = 1 then

L Look from the beginning of schedule|] forward for the first -1 entry, and replace it

with T.item;
else
L Look from the end of schedule[] backward for the first -1 entry, and replace it with
T.item;

return (n — 1, schedule, remainingItems, timeReq);
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Algorithm 11: Johnson’s Rule for Para-MSS

1 Function ReLearn_MSS(n, schedule., remainingltems., timeReq., Ip):
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if n = 0 then
M1Time < O;
M2Time + O;
for every item i in schedule, ] do
M1Time < M1Time + timeReq, [i][1];
if M1Time < M2Time then
| M2Time < M2Time + timeReq[i][2];

else
| M2Time <— M1Time + timeReq [i][2];

R[Iy] + M2Time;

else
T, < ExtractL_MSS(remainingltems.,timeReq., Iy);
for each interval I € I(T,) do

[P'] +
BranchL_MSS(n, scheduley [I], remainingltems[I], timeReq~, Ty[I]);
R[I] < ReLearn_MSS(P',I);

| return R[[o];
Function Extractl_MSS(remainingltems.,timeReq., Iy):

minProTime, < 0o;
item < —1;
machine < —1;
for every item i in remainingltems,[] do
minProlime. < min(minProTime, timeReq,[i|[1], timeReq,[i][2]);
for each interval I € I(minProTime~) do
if minProTime[I] = timeReg,[i][1] then
L T, [I].item « i;
T, [I].machine < 1;
if minProTime,[I] = timeReg,[i][2] then
L T, [I].item < i;
T, [I].machine < 2;

| return T,;
Function BranchIL_MSS(n, schedule,[I], remainingItems,[I],timeReq., Ty[I]):

Remove T, [I].item from remainingltems. [I];
if T, [I].machine = 1 then
Look from the beginning of schedule|I] forward for the first -1 entry, and replace it
with T, [I].item;
else
L Look from the end of schedule. [I] backward for the first -1 entry, and replace it with
T, [I].item;

| return (n — 1, schedule,[I], remainingItems,[I], timeReqy );

B Experimental Setting

In this section, we give details about the experimental setting, including the random source and
sink selection method used in MCFP, the generation of the artificial dataset for each problem we

experiment on, and the parameters tuning.

The Random Source and Sink Selection Method Used in MCFP We design graph-specific
distributions for taking a random source and a random sink for the minimum cost flow problem
(MCFP), with the goal of making sure that the path between the source and the sink is not too short
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Table 5: Mean regrets and standard deviations for MSS with unknown parameters in artificial dataset.

10 Jobs 20 Jobs 30 Jobs 40 Jobs

Size 100 300 100 300 100 300 100 300

B&L 112.23+10.74 118.03+6.40 162.05£11.90 164.73+6.74 189.70+17.62 196.33+8.90 216.23+18.10  220.88+12.25
LR 121.91+12.12 121.53+6.66 168.03+14.47 171.71+8.09 201.32421.26  204.38+10.31 226.74+21.34  225.80£16.28
k-NN 122.67+14.31 123.89+6.98 168.52+18.96 170.40+11.08 201.88+22.63  203.85+11.74 | 227.95428.40  221.45%12.62
CART 117.79+14.46 123.67+£7.41 167.56+22.89 170.08+9.13 200.31+23.75  202.04+12.57 | 225.29+24.91 227.99+12.45
RF 120.72+12.38 123.90+6.18 172.18+20.69 171.02+11.81 205.62420.37  205.04£11.25 | 223.29+22.52  228.13+16.86
SPO Tree 122.21+16.07 122.23+7.81 175.15+19.87 170.29+11.96 203.94+21.78  204.88+11.09 | 231.14%£30.03  229.43%17.39
SPO Forest 125.37+12.52 121.64+6.76 171.11+18.06 171.17+11.91 208.32423.14  206.16+16.65 | 223.20+22.00  230.55%12.96
Average TOV || 1215.19425.80 1223.62+16.46 | 2351.32+34.52 2347.40+23.01 || 3481.60+55.41 3473.42+30.45 | 4606.86+57.62 4599.35+38.33

Table 6: Mean regrets and standard deviations for MSS with unknown parameters in real-life dataset.

10 Jobs 20 Jobs 30 Jobs 40 Jobs

Size 100 300 100 300 100 300 100 300
B&L 2.63+1.25 2.41+0.57 7.91+2.02 7.85+1.34 14.55+3.34 15.24+2.34 18.52+2.98 21.17+1.55
LR 3.08+1.37 2.82+0.58 9.82+2.06 9.35+1.52 17.8743.22 17.38+2.33 20.78+3.65 23.48+2.04
k-NN 7.88+2.14 7.46+0.93 29.76+6.07 25.70+£3.38 46.56+7.57 39.84+3.80 54.24+7.81 48.23+4.17
CART 8.53+2.23 6.43+0.98 24.80+7.15 21.86+3.55 44.77+8.68 33.02+4.51 52.45+8.86 35.1945.50
RF 6.92+2.02 5.71+1.00 22.18+5.24 19.94+3.04 36.40+6.25 28.37+3.31 44.52+6.61 31.01+4.24
SPO Tree 4.53+1.53 4.19+0.83 13.51+4.84 12.1243.15 43.39+8.30 36.89+4.24 49.21+9.67 42.98+5.59
SPO Forest 3.38+1.40 3.31+0.69 11.96+4.87 10.20£1.90 46.02+7.86 33.83+3.53 46.18+10.06 35.59+3.25
Average TOV || 548.99+19.79  550.05+13.59 | 1377.53+53.51 1394.51+24.25 | 2040.78+55.05 2022.41+34.75 | 2644.11+52.04 2671.86+34.35

(e.g. length 1). In USANet, we randomly choose the source from vertices {1,2,3,4,5} and the sink

from vertices {20, 21,22, 23, 24}. In GEANT, the source and sink are randomly selected from all the
points with zero in-degree and zero out-degree respectively.

The Generation of the Artificial Dataset The artificial datasets for the three problems are gener-
ated as follows. Each feature is a 4-tuple @y, = (Gup1, Quv2, Guvss Qupa), Where a1 € {1,2,...,7}
represents the day of the week, a2 € {1,2,...,30} represents the day of the month, and
Ayv3, Gupa € |0, 360] represent the meteorology index and road congestion respectively. The true
parameters are generated by 10 * sin(ayy1) * $in(ayy2) + 100 % sin(ayys) * sin(ayyq) + C, where
C is a large positive constant to ensure the value of each learned parameter is positive. We use such
nonlinear mapping to compare the performance of our proposed methods and that of other methods.

Parameters Tuning As for the parameters tuning, we try different settings for k-nearest neighbors
(k-NN), Random forest (RF), SPO tree (SPOT), and SPO Forest. In k-NN, we try the regression
model with k& € {1,3,5}. As for RF, we try different numbers of trees in the forest n_estimator €
{10,50,100}. We tune the maximum depths of the tree max_depth € {1,3,10,100} and the
minimum weights per node min_weights € {5,20,30} for SPOT. For SPO Forest, we tune two
parameters: the maximum depth of each tree maz_depth € {1,3,10,100} and the number of trees
in the forest n_estimator € {10, 50, 100}.

We end this appendix section with a remark on our experiments using real-life data. Given that we
are unable to find datasets specifically for the MCFP, MCVC and MSS problems, we follow the
experimental approach of Demirovi€ et al. [3, 4, 5] and use real data from a different problem (the
ICON scheduling competition) as numerical values required for our experiment instances.

C Additional Results: Multi-stage Scheduling

This section shows the experiment results of the job number of 10, 20, 30, and 40 in the MSS
experiment with artificial and real-life datasets.

Table 5 reports the mean regrets and their standard deviations for each method on the artificial dataset.
Although all algorithms achieve similar performances, B&L performs (slightly) better than all other
methods in all cases. The results on the real-life dataset are shown in Table 6. Compared with the
artificial dataset, the performance differences among different methods are larger in the real-life
dataset, and the advantages of B&L are more evident. Contrasting other methods, B&L obtains
14.58%-69.20% (n = 100) and 14.47%-67.73% (n = 300) smaller regret for 10 jobs, 19.45%-73.41%
(n = 100) and 16.09%-69.45% (n = 300) smaller regret for 20 jobs, 18.56%-68.74% (n = 100)
and 12.29%-61.74% (n = 300) smaller regret for 30 jobs, and 10.85%-65.85% (n = 100) and
9.84%-56.10% (n = 300) for 40 jobs. Similar to the results of MCFP and MCVC, all algorithms
achieve better performance on the real-life dataset. For example, B&L achieves 4.69%-9.65% relative
error in the artificial dataset, and 0.44%-0.79% relative error in the real-life dataset.
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