
A Detailed Literature Review435

In this section, we first summarize the related works in Predict+Optimize, and then summarize other436

works related to learning unknowns in optimization problems, but outside of Predict+Optimize.437

A.1 Predict+Optimize438

As mentioned in Section 1, prior works all focus on the case where all unknown parameters are439

revealed simultaneously. Most of them have focused on the regime where the unknown parameters440

only appear in the objective and use the regret proposed by Elmachtoub et al. [6] as the loss function.441

Since the regret loss is usually not (sub-) differentiable, and gradient-based methods do not apply,442

they proposed ways to overcome the non-differentiability of the regret. Elmachtoub et al. [6] propose443

a differentiable surrogate function for the regret function, while Wilder et al. [26] relax the integral444

objective in constrained optimization and solve a regularized quadratic programming problem. Mandy445

and Guns [15] focus on mixed integer linear programs and propose an interior point based approach.446

In addition to computing the (approximate) gradients of the regret function or approximations of447

it, another way to deal with the non-differentiability of the regret is to exploit the structure of448

optimization problems to train models without computing gradients. Demirović et al. [5] investigate449

problems amenable to tabular dynamic programming and propose a coordinate descent method to450

learn a linear prediction function. Hu et al. [13] extend their framework, to enable problems solvable451

with a recursive or iterative algorithm to be tackled in Predict+Optimize. Guler et al. [8] proposes a452

divide and conquer algorithm, extending the work of Demirović et al. [5] in a different manner so453

that the algorithm can deal with problems with the linear objective function.454

As for Predict+Optimize with unknown parameters also in constraints, Hu et al. [11] first propose the455

post-hoc regret loss function and a framework for packing and covering LPs with unknown parameters456

in both objectives and constraints. They [12] further advocate a conceptually simpler framework,457

which enable solving MILPs with unknown constraints. Besides, there are also works applying458

Predict+Optimize to a wide range of real-world problems, including maritime transportation [25],459

last-mile delivery [4], and trading in renewable energy [24].460

A.2 Decision-Focused Learning461

Now we summarize other works related to learning unknowns in optimization problems, particularly462

those outside of Predict+Optimize. These works can be placed into two categories.463

One category considers learning unknown parameters but with very different goals and measures464

of loss. For example, CombOptNet [20] and Nandwani et al. [18] focus on learning parameters so465

as to make the predicted optimal solution (Stage 0 estimated solution in the proposed framework)466

as close to the true optimal solution x⇤ as possible in the solution space/metric. However, these467

works also assume that all unknown parameters are revealed simultaneously, and thus cannot be468

applied to applications where unknown parameters are revealed progressively over several stages.469

Furthermore, experiments in Two-Stage Predict+Optimize [12] show that these other methods yield470

worse predictive performance when evaluated on the post-hoc regret.471

Another category gives ways to differentiate through LPs or LPs with regularizations, as a technical472

component in a gradient-based training algorithm [2, 26, 1]. While our proposed algorithms in473

Section 4.1 and Appendix C use the methods of Hu et al. [11, 12] and Mandi and Guns [15] to474

perform gradient computations, we could in principle use any of the aforementioned other works.475

However, we point out that our main contribution is not the gradient computation method but the476

two training algorithms of the set of NNs. Nonetheless, experiments in Two-Stage Predict+Optimize477

framework [12] demonstrate that the gradient calculation method they used (which we also use)478

performs at least as well in post-hoc regret performance as other gradient methods, while being479

(significantly) faster. This is the reason we follow Hu et al.’s method and implementation.480

A.3 (Multi-Stage) Stochastic Programming481

As mentioned in Section 1, while stochastic programming and Predict+Optimize are related frame-482

works, the technical challenges are very different. The most important difference is that Pre-483

dict+Optimize is a supervised learning problem, whereas stochastic programming is unsupervised484
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learning. In Predict+Optimize frameworks, the true parameters (which need prediction) are always485

associated with relevant features that help prediction. On the other hand, stochastic programming486

frameworks have no such features, and typically assume that the entire distribution over the unknown487

parameters is given to the algorithm — in practice, the distribution needs to be estimated from488

historical data over the unknown parameters, which is an unsupervised density estimation problem.489

Due to the different starting assumptions, Predict+Optimize and stochastic programming formulate490

optimization problems rather differently. In stochastic programming, since the assumption is that491

the full parameter distribution is given, the optimization problem (or problems, across stages) would492

explicitly include the expectation operator in the objective — the goal is to solve for optimization493

decisions so that the expected objective, with expectation taken over the parameter distribution, is494

maximized/minimized. Predict+Optimize frameworks approach this rather differently: while the495

goal is still to optimize the expected objective, the optimization problems themselves are phrased496

such that they take predicted parameters, and the problem asks for the optimal decisions assuming497

the predicted parameters. It then becomes the goal of the learning algorithm to learn to make498

predictions from features, such that the expected objective is optimized overall. This is achieved via499

empirical risk minimization over training data, which we assume are samples from the underlying500

(feature,parameter) joint distribution.501

We also note the dimensionality of the objects being learnt in the different frameworks. In stochastic502

programming, the entire distribution over the unknown parameters needs to be learnt. On the other503

hand, in Predict+Optimize, we learn a mapping from features to predicted parameters, which, under504

smoothness assumptions or bounded model complexity assumptions (e.g. by restricting to using a505

fixed neural network architecture), can effectively be regarded as a (much) lower dimensional object506

than learning an entire distribution over unknown parameters.507

B A Detailed Example for Multi-Stage Predict+Optimize Framework508

In this section, we use the hospital scenario, i.e., the nurse rostering problem (NRP), mentioned509

in Section 1 as a running example for the Multi-Stage Predict+Optimize framework described in510

Section 3.1.511

Here we describe the NRP in detail. A hospital needs to make nurses schedule for the whole week (7512

days) two weeks beforehand so that the nurses can be well prepared for the work and also plan for513

their leisure activities. The goal of the hospital is to minimize the total costs for hiring nurses and514

meet the patients’ demands.515

There are full-time nurses in the hospital. If there are too many patients and the hospital’s nurses are516

understaffed, the hospital can temporarily hire some extra nurses at a higher salary. Since the number517

of patients that will come in each shift on each day is unknown two weeks beforehand, the hospital518

needs to predict the number of patients to make a schedule for the full-time nurses and plan to hire519

extra nurses. The hospital will learn the predictor based on historical hospital records, considering520

features such as time of year, day of the week and temperature.521

To provide better service to patients, the hospital has an appointment system that requires patients522

to schedule an appointment in advance to receive medical care. Reservations for the next day close523

the night before. At this point, the hospital knows the precise number of patients for each shift of524

the current day. Therefore, at the night of day (t� 1), i.e., Stage t (1  t  7), the true numbers of525

patients for each shift of the current day are revealed.526

Now we show the running example for the Multi-Stage Predict+Optimize framework. Examples 1,527

and 2 are examples for Stage 0 and Stage t (for 1  t  T ) respectively.528

Example 1. Suppose there are n full-time nurses, 7 days, and 3 working shifts per day. Full-time529

nurses are entitled to take a rest: day-off shift. The decision variables are: 1) a Boolean vector530

x 2 {0, 1}n⇥7⇥3, where xi,j,k represents that whether nurse i is assigned to shift k in day j, and 2)531

an integer vector � 2 N7⇥3, where �j,k represents the number of extra nurses hired in shift k day532

j. Let dj,k denote the number of patients in shift k day j, mi denote the number of patients that the533

nurse i can serve per shift, ci denote the payment of the nurse i per shift, es denote the number of534

patients that each extra nurse can serve per shift, and ec denote the payment of each extra nurse per535

shift. The unknown parameters are d 2 N7⇥3.536
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Consider the time that the schedules need to be made as Stage 0. The hospital learns the predictor537

and uses the estimated number of patients d̂(0) to optimize for that week’s schedule. The Stage 0 OP,538

the NRP using the estimations, can be formulated as:539

x̂(0), �̂(0) =argmin
x,�

nX

i=1

ci

7X

j=1

3X

k=1

xi,j,k + ec

7X

j=1

3X

k=1

�j,k (1)

s.t.
nX

i=1

mixi,j,k + es�j,k � d̂(0)j,k, 8j 2 {1, . . . , 7}, k 2 {1, 2, 3} (2)

4X

k=1

xi,j,k = 1, 8i 2 {1, . . . , n}, j 2 {1, . . . , 7} (3)

xi,j,3 + xi,j+1,1  1, 8i 2 {1, . . . , n}, j 2 {1, . . . , 6} (4)

1 
7X

j=1

xi,j,4  2, 8i 2 {1, . . . , n} (5)

x 2 {0, 1}, � � 0 (6)

where Equation (1) represents the objective, which is to minimize the total costs for hiring full-time540

nurses and extra nurses; Equation (2) ensures that the schedule can satisfy the patient demand under541

each shift; Equation (3) ensures that each full-time nurse will be scheduled for exactly one shift each542

day; Equation (4) ensures that no full-time nurse will be scheduled to work a night shift followed543

immediately by a morning shift; and Equation (5) ensures that each full-time nurse gets one or two544

day-off shifts per week.545

After Stage 0, the schedules for day 1 are hard commitments and cannot be changed, i.e., x̂(0)
0 =546

{xi,1,k | 8i 2 {1, ..., n}, k 2 {1, 2, 3}}, whereas the rest of the decisions are soft commitments.547

Example 2. (Continued) At the night of day t � 1, i.e., Stage t (for 1  t  7), the reservations548

for the next day close, and the true numbers of patients for the three shifts of the next day ✓t =549

(dt,1, dt,2, dt,3) 2 N3 are revealed. By Stage t, all the true numbers of patients for the prior t � 1550

days are also revealed. The number of patients for the later 7� t days are still uncovered and are551

estimated as ✓̂(t) = (✓̂(t)t+1, . . . , ✓̂
(t)
T ), where ✓̂(t)i = (d̂(t)i,1, d̂

(t)
i,2, d̂

(t)
i,3) 2 N3 represents the numbers of552

patients on day i estimated on day t.553

Hard commitments contain two parts: 1) the schedule for the day t and the prior t� 1 days, and 2)554

the number of extra nurses hired in the prior t� 1 days, i.e., here x[1 : t� 1] represents {xi,j,k | 8i 2555

{1, ..., n}, j 2 {1, ..., t}, k 2 {1, 2, 3}} [ {�j,k | 8j 2 {1, ..., t � 1}, k 2 {1, 2, 3}}. The hospital556

may update the predictions and reschedule for the later (7� t) days. But such rescheduled leads to557

extra costs for hiring full-time nurses, which are recorded by the penalty function Pen(x̂(t�1) !558

x,✓[1 : t]). The more temporarily the shift is rescheduled, the larger the increase in the costs. For559

simplicity, we assume that the extra cost is linear in the original cost for hiring each full-time nurse.560

In this scenario, the penalty function can be formulated as Extra(x̂(t�1) ! x):561

Extra(x̂(t�1) ! x) =
nX

i=1

7X

j=1

3X

k=1

Extra(x̂(t�1) ! x)i,j,k

where the (i, j, k)-th item in the penalty function is:562

Extra(x̂(t�1) ! x)i,j,k =

(
(T � j + t)⇢ici, xi,j,k > x̂(t�1)

i,j,k

0, xi,j,k  x̂(t�1)
i,j,k

As mentioned in Section 3.1, the Stage t optimization problem modifies the original Para-OP by: 1)563

introducing the penalty term capturing the cost of changing the Stage t � 1 solution x̂(t�1) to the564

new Stage t solution x to the objective:565

x̂(t), �̂(t) = argmin
x,�

nX

i=1

ci

7X

j=1

3X

k=1

xi,j,k + ec

7X

j=1

3X

k=1

�j,k +
nX

i=1

7X

j=1

3X

k=1

Extra(x̂(t�1) ! x)i,j,k
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and 2) introducing the constraint that hard commitments from prior stages cannot be modified in the566

current Stage t:567

xi,j,k = x̂(t�1)
i,j,k , 8i 2 {1, ..., n}, j 2 {1, ..., t}, k 2 {1, 2, 3}}

�j,k = �̂(t�1)
j,k , 8j 2 {1, ..., t� 1}, k 2 {1, 2, 3}

Besides, for the first constraint in Equation (2), the Stage 0 predicted parameters d̂0 are replaced by568

(d1,1, . . . , dt,3, d̂
(t)
t+1,1, . . . , d̂

(t)
7,3):569

nX

i=1

mixi,j,k + es�j,k � dj,k, 8j 2 {1, . . . , t}, k 2 {1, 2, 3}

nX

i=1

mixi,j,k + es�j,k � d̂tj,k, 8j 2 {t+ 1, . . . , 7}, k 2 {1, 2, 3}

The four constraints from Equation (3) to Equation (6) keep the same in the Stage t (for 1  t  7)570

optimization.571

C Gradient Computations in Sequential Coordinate Descent572

The post-hoc regret used to train NNt can be written as:573

PReg(✓̂(t),✓[t+1 : T ]) = obj(x̂(T ),✓)� obj(x⇤(✓),✓)+
TX

i=t

Peni(x̂
(i�1) ! x̂(i),✓[1 : i]) (7)

Noting the second term is independent of ✓̂(t) and hence NNt, the gradient with respect to an edge574

weight we in NNt is575

dPReg

dwe
=

d obj(x̂(T ),✓)

dwe
+

TX

i=t

dPeni(x̂(i�1) ! x̂(i),✓[1 : i])

dwe

By the law of total derivative, we can expand this to576

dPReg

dwe
=

d obj(x̂(T ),✓)

dx̂(T )

dx̂(T )

d✓̂(t)

d✓̂(t)

dwe
+

TX

i=t

✓
@ Peni

@x̂(i�1)

����
x̂(i)

dx̂(i�1)

d✓̂(t)
+

@ Peni

@x̂(i)

����
x̂(i�1)

dx̂(i)

d✓̂(t)

◆
d✓̂(t)

dwe

Similar to the gradient computation in Section 4.1, the term d✓̂(t)

dwe
is calculated via standard backpropa-577

gation, while the terms d obj(x̂(T ),✓)
dx̂(T ) , @ Peni

@x̂(i�1)

��
x̂(i) and @ Peni

@x̂(i)

��
x̂(i�1) are calculable when the objective578

and penalty functions are smooth. The only non-trivial calculation is for dx̂(i)

d✓̂(t)
for all i 2 [t : T ].579

Recall that x̂(i) is computed from the Stage i optimization problem, as a deterministic function of580

x̂(i�1) and ✓̂(t), while x̂(i�1) itself also depends on ✓̂(t). We thus further decompose dx̂(i)

d✓̂(t)
into the581

following recursive computation582

dx̂(i)

d✓̂(t)
=

@x̂(i)

@x̂(i�1)

����
✓̂(t)

dx̂(i�1)

d✓̂(t)
+

@x̂(i)

@✓̂(t)

����
x̂(i�1)

Calculating @x̂(i)

@x̂(i�1)

���
✓̂(t)

and @x̂(i)

@✓̂(t)

���
x̂(i�1)

requires differentiating through a MILP. So instead of583

directly using MILP formulations for the Stage t optimization problems, we use the convex relaxation584

by Hu et al. [12], which in turn adapts the approach of Mandi and Guns [15].585

D Details for Case Studies586

In this section, we give a detailed description for the other two benchmarks used in Section 5.587
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D.1 Production and Sales Problem588

We first demonstrate, using the example of the production and sales problem, how our framework589

can tackle LPs. An oil company intends to develop a production and sales plan for the upcoming T590

quarters/months. The goal is to maximize the profits, i.e., the sales revenues minus the production591

costs, under the constraints that the amount of oil product sold each quarter/month cannot exceed592

the customer demands. The production cost and sales price for each quarter/month are known, but593

the customer demand is revealed only at the beginning of each quarter/month after the company594

receives the orders. The company will estimate the customer demands based on historical sales595

records, considering features such as oil type, oil consumption of different areas, and so on.596

The decision variables are: 1) a real vector x 2 RT , where xi represents the amount of product597

produced in month i, and 2) a real vector y 2 RT , where yi represents the amount of product sold598

in month i. Let pi denote the unit profit of selling product in month i, ci denote the unit cost of599

producing product in month i, di denote the customer demands in month i. The unknown parameters600

are d 2 RT .601

At Stage 0, i.e., the time that the production and sales plan needs to be made, there is no order yet602

and the customer demands are unknown. The company learns the predictor and uses the predicted603

demands d̂(0) to make the plan. The Stage 0 OP can be formulated as:604

x̂(0), ŷ(0) =argmax
x,y

TX

i=1

piyi �
TX

i=1

cixi (8)

s.t. yi  d̂(0)i , 8i 2 {1, . . . , T} (9)

yi 
i�1X

j=1

xj �
i�1X

j=1

yj , 8i 2 {1, . . . , T} (10)

x � 0, y � 0 (11)

where Equation (8) represents the objective, for maximizing the profits, i.e., the sales revenues minus605

the production costs; Equation (9) ensures that the amount of oil product sold each quarter/month606

will not exceed the customer demands; Equation (10) ensures that the amount of oil product sold607

each quarter/month will not exceed the inventory at that quarter/month.608

At the beginning of each quarter/month, the company receives orders, and the demand for that609

quarter/month is revealed. We assume that the beginning of each quarter/month is one stage. Then,610

by Stage t (1  t  T ), all the true demands for the prior (t� 1) quarters/months as well as the t611

quarter/month are revealed. The demands for the later (T � t) quarters/months are still uncovered and612

are estimated as ✓̂(t) = (✓̂(t)t+1, . . . , ✓̂
(t)
T ), where ✓̂(t)i = d̂(t)i represents the demand of quarter/month i613

estimated on quarter/month t. The production and sales for the quarter/month t and the prior (t� 1)614

quarters/months have already happened and cannot be changed, which are committed variables. There615

is no penalty function in this scenario. Therefore, the Stage t OP can be formulated as:616

x̂(t), ŷ(t) =argmax
x,y

TX

i=1

piyi �
TX

i=1

cixi

s.t. yi  di, 8i 2 {1, . . . , t}

yi  d̂(t)i , 8i 2 {t+ 1, . . . , T}

yi 
i�1X

j=1

xj �
i�1X

j=1

yj , 8i 2 {1, . . . , T}

xi = x̂(t�1)
i , yi = ŷ(t�1)

i , 8i 2 {1, . . . , t� 1}
x � 0, y � 0

D.2 Investment Problem617

In the second experiment, we showcase our framework on an MILP. The unknown parameters appear618

in both the objective and constraints. A person wants to make an investment plan for buying several619
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types of financial products next year to maximize the investment profit, under limited capital. The620

investment profit contains 3 parts: 1) the interest gained from the products owned, 2) the market prices621

of the products owned at the end of the year, and 3) profits from selling products minus costs for622

buying products minus transaction fees. The capital for the whole year is given. However, the market623

price of each product in each quarter/month is revealed only at the beginning of the quarter/month,624

and the interest of owning each product in each quarter/month is revealed only at the end of the625

quarter/month. The person will estimate the market prices and interests based on past experiences,626

considering features such as the product type, the financial condition and operational capabilities of627

the company to which the product belongs, and so on.628

Suppose there are T quarters/months, and N investment products. The decision variables are: 1)629

a natural vector x 2 NT⇥N , where xi,j represents the number of product j on hand at the end of630

quarter/month i, 2) an integer vector y 2 Z(T�1)⇥N , where yi,j represents the number of product631

j bought or sold in quarter/month i, and 3) a natural vector z 2 N(T�1)⇥N , where zi,j represents632

whether the transaction fee is paid for product j in month i. Let pi,j denote the interest of product j633

in month i, wi,j denote the market price of product j in month i, C denote the capital for the whole634

year.635

We assume that the end of quarter/month t, i.e., the beginning of quarter/month (t+ 1), is Stage t. At636

Stage 0, i.e., the beginning of quarter/month 1, the person can buy some products without paying a637

transaction fee. The market price of each product at this time is known, i.e., w1 = (w1,1, . . . , w1,N )638

are given. The unknown parameters in this OP are p 2 RT⇥N and w = (w2, . . . , wT ) 2 R(T�1)⇥N .639

At the beginning of each subsequent quarter/month, the person can buy more products or sell the640

products owned but needs to pay a transaction fee. For simplicity, we assume that the transaction641

fee for buying/selling product i in quarter/month j is linear in the market price of product i in642

quarter/month j. Here, the linearity factor is independent of the request. That is, if the person643

buys/sells k number of product i in quarter/month j, the person has to spend k�wij , where � � 0 is644

a non-negative tunable scalar parameter, and we call it transaction factor.645

At Stage 0, i.e., the beginning of quarter/month 1, the person uses the predicted interests p̂(0) and646

market prices ŵ(0) to make the plan. The Stage 0 OP can be formulated as:647

x̂(0), ŷ(0), ẑ(0) =argmax
x,y,z

obj(p̂(0), w1, ŵ
(0), x, y, z) (12)

s.t.
NX

j=1

w1,jx1,j  C, (13)

PN
j=1 w1,jx1,j

+
Pt

i=2

PN
j=1 �ŵ

(0)
i,j zi,j

+
Pt

i=2

PN
j=1 ŵ

(0)
i,j yi,j

 C, 8t 2 {2, . . . , T} (14)

xi,j = yi,j + x(i�1),j , 8i 2 {2, . . . , T}, j 2 {1, . . . , N} (15)
zi,j � yi,j , 8i 2 {2, . . . , T}, j 2 {1, . . . , N} (16)
zi,j � �yi,j , 8i 2 {2, . . . , T}, j 2 {1, . . . , N} (17)

where648

obj(p̂0, w1, ŵ
0, x, y, z)

=
TX

i=1

p̂(0)i,j xi,j +
NX

j=1

ŵ(0)
T,jxT,j � (

NX

j=1

w1,jx1,j +
TX

i=2

NX

j=1

�ŵ(0)
i,j zi,j +

TX

i=2

NX

j=1

ŵ(0)
i,j yi,j)

represents the objective, which is to maximize the investment profit; Equations (13) and (14) ensure649

that the money spent on buying products and transaction fees will not exceed the capital available;650

Equations (15), (16), and (17) formulate the relationships among three decision variables x, y, and z.651

At Stage t, i.e., the end of quarter/month t, the interest of owning each product in quarter/month652

t as well as the market price of each product revealed. Then, by Stage t (1  t  T ), all the true653

market prices for the prior t quarters/months, as well as the (t + 1) quarter/month, are revealed.654

Besides, all the true interests for the prior t quarters/months are also revealed. But the market prices655

for the later (T � t� 1) quarters/months and the interests for the later (T � t) are still uncovered and656
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are estimated as ŵ(t) = (ŵ(t)
t+2, . . . ŵ

(t)
T ) and p̂(t) = (p̂(t)t+1, . . . p̂

(t)
T ), where ŵ(t)

i and p̂(t)i represents657

the market price and the interest of quarter/month i estimated on quarter/month t. The investment658

decisions x, y, z for the prior t quarters/months have already happened and cannot be changed, which659

are committed variables. There is no penalty function in this scenario.660

x̂(t), ŷ(t), ẑ(t) = argmax
x,y,z

obj(p[1 : t]� p̂(t), w1,w[2 : t+ 1]� ŵ(t), x, y, z)

s.t.
NX

j=1

w1,jx1,j  C,

PN
j=1 w1,jx1,j

+
Pk

i=2

PN
j=1 �wi,jzi,j

+
Pk

i=2

PN
j=1 wi,jyi,j

 C, 8k 2 {2, . . . , t}

PN
j=1 w1,jx1,j

+
Pt+1

i=2

PN
j=1 ↵wi,jzi,j +

Pk
i=t+2

PN
j=1 ↵ŵ

(t)
i,j zi,j

+
Pt+1

i=2

PN
j=1 wi,jyi,j +

Pk
i=t+2

PN
j=1 ŵ

(t)
i,j yi,j

 C, 8k 2 {t+ 1, . . . , T}

xi,j = yi,j + x(i�1),j , 8i 2 {2, . . . , T}, j 2 {1, . . . , N}
zi,j � yi,j , 8i 2 {2, . . . , T}, j 2 {1, . . . , N}
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E Hyperparameters for the Experiments662

The methods of k-NN, RF, NN, Baseline, SCD and PCD have hyperparameters, which we tune via663

cross-validation: for k-NN, we try k 2 {1, 3, 5}; for RF, we try different numbers of trees in the664

forest {10, 50, 100}; for NN, Baseline, and PCD, we treat the optimizer, learning rate, and epochs as665

hyperparameters. For Baseline, SCD and PCD, we treat the optimizer, learning rate, the early-cut-off666

value of log barrier regularization term (µ), and epochs as hyperparameters.667

Table 4 show the final hyperparameter choices for the three problems: 1) production and sales problem,668

2) investment problem, and 3) nurse rostering problem.669

Ridge, k-NN, CART and RF are implemented using scikit-learn [21]. The neural network is670

implemented using PyTorch [19]. To compute the two stages of optimization at test time for our671

method, and to compute the optimal solution of an (MI)LP under the true parameters, we use the672

Gurobi MILP solver [9].673

F Detailed Experiment Results674

F.1 Production and Sales Problem675

Table 5 reports the mean post-hoc regrets and standard deviations across 30 simulations for all training676

methods on the production and sales problem. Compared among standard regression models, NN677
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Table 4: Hyperparameters of the experiments on the three problems.

Model Hyperaprameters
Production and sales Investment Nurse rostering

Baseline
optimizer: optim.Adam;
learning rate: 1⇥ 10�7;
µ = 10�8; epochs=20

optimizer: optim.Adam;
learning rate: 1⇥ 10�6;
µ = 10�8; epochs=20

optimizer: optim.Adam;
learning rate: 1⇥ 10�6;
µ = 10�8; epochs=20

SCD
optimizer: optim.Adam;
learning rate: 1⇥ 10�7;
µ = 10�8; epochs=20

optimizer: optim.Adam;
learning rate: 1⇥ 10�6;
µ = 10�8; epochs=20

optimizer: optim.Adam;
learning rate: 5⇥ 10�7;
µ = 10�7; epochs=20

PCD
optimizer: optim.Adam;
learning rate: 1⇥ 10�7;
µ = 10�8; epochs=20

optimizer: optim.Adam;
learning rate: 1⇥ 10�6;
µ = 10�8; epochs=20

optimizer: optim.Adam;
learning rate: 5⇥ 10�7;
µ = 10�7; epochs=20

NN
optimizer: optim.Adam;
learning rate: 1⇥ 10�5;

epochs=20

optimizer: optim.Adam;
learning rate: 1⇥ 10�5;

epochs=20

optimizer: optim.Adam;
learning rate: 1⇥ 10�3;

epochs=20
k-NN k=5
RF n estimator=100

Table 5: Mean post-hoc regrets and standard deviations of all methods for the production and sales
problem.

Price group Low-profit High-profit
Stage num 4 12 4 12
SCD 293.78±99.21 488.72±127.62 505.24±89.55 887.38±250.55
PCD 297.34±107.44 495.21±122.42 520.76±92.20 905.61±255.99
Baseline 305.26±100.88 515.80±137.67 526.77±104.99 935.03±263.47
NN 355.56±103.78 637.77±199.25 561.36±96.49 997.44±273.91
Ridge 390.88±114.89 648.60±214.69 612.49±109.62 1017.41±277.01
knn 368.20±111.34 663.96±208.51 591.47±97.87 1050.42±296.83
CART 485.73±152.05 873.85±279.68 763.88±136.37 1345.56±337.05
RF 375.18±114.23 644.63±204.50 567.35±94.16 1021.51±274.34
TOV 1615.75±675.77 7344.78±2290.04 5007.09±976.65 21066.00±4159.56

performs well and achieves the best performance in all cases listed in Table 5, while Ridge and RF678

also have decent performances.679

Table 6 shows improvement ratios among the proposed 3 algorithms and BAS. “A vs B" refers to the680

improvement in the percentage of method A over method B. Take “Baseline vs BAS" as an example,681

the improvement percentage of the baseline over BAS is (355.56�305.26)/355.56⇥100% = 14.15%682

when T = 4 in the low-profit price group. Comparing numbers in “SCD VS BAS", “PCD VS BAS",683

and “Baseline VS BAS" when stage num = 4 and 12, we can see that the advantages of the proposed684

methods over BAS are more distinct when the number of stages is larger. Additionally, comparing685

numbers in “SCD VS Baseline" and “PCD VS Baseline" when stage num = 4 and 12, we also note686

that the advantages of SCD and PCD over the Baseline are more distinct when the number of stages687

is larger.688

Table 6: Improvement ratios among Baseline, SCD, PCD, and standard regression models for the
production and sales problem.

Price group Stage num SCD VS BAS PCD VS BAS Baseline VS BAS SCD VS Baseline PCD VS Baseline SCD VS PCD

Low-profit 4 17.38% 16.37% 14.15% 3.76% 2.59% 1.20%
12 23.37% 22.35% 19.12% 5.25% 3.99% 1.31%

High-profit 4 10.00% 7.23% 6.16% 4.09% 1.14% 2.98%
12 11.03% 9.21% 6.26% 5.10% 3.15% 2.01%

Figure 1 shows post-hoc regret comparisons between BAS and the proposed methods (Baseline, SCD,689

and PCD) for each run. The x-axis refers to the number of each simulation, and the y-axis refers690

to the ratio of the post-hoc regret achieved by BAS and the proposed methods (Baseline, SCD, and691

PCD) corresponding to that simulation. To easily read the comparisons, we sorted all simulations692

by the increasing order of the post-hoc regret ratios of BAS/SCD. The red dashed line where the693

post-hoc regret ratio is 1.0 represents the boundary line where (Baseline, SCD, or PCD) performs694

better or worse than BAS. When the point representing the post-hoc regret ratio of BAS/(Baseline,695

SCD, or PCD) falls above the red dashed line, it means that (Baseline, SCD, or PCD) performs better696

than BAS. Conversely, when the point falls below the red dashed line, it means BAS performs better697

than (Baseline, SCD, or PCD). Observing Figure 1, SCD outperforms BAS across all simulations in698
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all 4 scenarios. While not as stable as SCD, PCD and Baseline also outperform BAS in most of the699

simulations. Compared with Figure 1a, there are more BAS/Baseline points that fall below the red700

dashed line in Figure 1b, while the number of BAS/SCD points and the number of BAS/PCD points701

that fall below the red dashed line are similar in Figure 1a and Figure 1b. The same phenomenon702

can be observed when comparing Figure 1c and Figure 1d, demonstrating the advantage of SCD and703

PCD over Baseline.704

(a) Low-profit products and 4 quarters. (b) Low-profit products and 12 months.

(c) High-profit products and 4 quarters. (d) High-profit products and 12 months.

Figure 1: BAS/Baseline, BAS/SCD, and BAS/PCD for the production and sales problem.

F.2 Investment Problem705

Table 7 and Table 8 report the mean post-hoc regrets and standard deviations across 30 simulations706

for all training methods on the investment problem. Compared among standard regression models,707

NN performs well and achieves the best performance in most cases, while Ridge and RF also have708

decent performances and obtain the smallest mean post-hoc regret in some cases.709

Table 7: Mean post-hoc regrets and standard deviations of all methods for the investment problem
when capital=25.

Stage num 4 12
Transaction
factor 0.01 0.05 0.1 0.01 0.05 0.1

SCD 19.85±3.14 14.73±3.59 10.56±1.63 1513.31±185.03 666.96±91.54 260.27±34.32
PCD 20.00±3.24 14.90±3.62 10.63±1.62 1524.69±191.19 675.27±95.10 263.97±35.09
Baseline 20.20±3.68 15.14±3.62 10.77±1.64 1540.47±186.90 686.84±92.49 269.07±34.47
NN 20.51±3.43 15.47±3.67 11.23±1.87 1563.78±199.67 699.30±101.58 277.31±32.99
Ridge 20.88±3.30 15.38±3.37 11.70±2.00 1588.11±200.48 703.74±97.62 276.51±32.14
k-NN 22.21±3.44 16.96±4.18 11.56±2.15 1643.46±198.96 722.73±79.93 285.73±41.26
CART 24.81±4.30 19.68±4.58 13.42±2.27 1845.40±285.85 832.02±129.30 333.71±51.84
RF 21.88±3.56 16.98±3.74 12.07±1.93 1563.94±190.01 700.31±77.70 279.84±34.73
TOV 64.11±4.91 51.53±9.97 39.87±2.67 2404.22±264.58 1147.61±114.54 502.05±46.67
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Table 8: Mean post-hoc regrets and standard deviations of all methods for the investment problem
when capital=50.

Stage num 4 12
Transaction
factor 0.01 0.05 0.1 0.01 0.05 0.1

SCD 47.48±6.98 34.92±5.57 25.50±3.88 3846.20±420.94 1663.82±208.60 646.14±75.52
PCD 47.67±6.64 35.22±5.98 25.63±3.93 3869.76±420.01 1679.17±205.01 652.57±74.45
Baseline 48.24±7.13 35.64±6.28 25.96±4.64 3941.09±437.57 1701.51±222.45 665.71±76.40
NN 48.98±7.19 36.42±5.70 26.62±4.07 4046.79±390.52 1736.59±232.15 680.94±70.76
Ridge 50.73±6.35 37.38±4.66 27.62±3.12 4019.04±454.78 1743.96±217.95 682.24±74.91
k-NN 53.49±8.52 39.69±7.22 28.12±3.86 4213.33±434.62 1797.32±206.92 702.48±94.53
CART 62.35±11.68 47.05±9.14 31.81±6.76 4723.27±529.86 2086.09±325.70 835.96±137.08
RF 52.49±6.73 39.07±6.50 27.75±3.84 3999.70±475.44 1748.02±201.68 696.46±75.14
TOV 158.56±11.19 126.22±8.86 99.83±7.02 6166.73±573.51 2860.05±288.85 1259.99±107.60

Table 9: Improvement ratios among Baseline, SCD, PCD, and standard regression models for the
investment problem.

Capital Stage num Transaction
factor SCD VS BAS PCD VS BAS Baseline VS BAS SCD VS Baseline PCD VS Baseline SCD VS PCD

25

4
0.01 3.25% 2.53% 1.53% 1.74% 1.01% 0.74%
0.05 4.23% 3.15% 1.57% 2.70% 1.61% 1.12%
0.1 6.03% 5.39% 4.12% 1.99% 1.33% 0.67%

12
0.01 3.23% 2.50% 1.49% 1.76% 1.02% 0.75%
0.05 4.07% 3.17% 1.78% 2.90% 1.68% 1.23%
0.1 5.87% 4.53% 2.69% 3.27% 1.89% 1.40%

50

4
0.01 3.06% 2.68% 1.51% 1.58% 1.19% 0.39%
0.05 4.12% 3.29% 2.14% 2.02% 1.18% 0.85%
0.1 4.21% 3.71% 2.46% 1.79% 1.27% 0.52%

12
0.01 3.84% 3.25% 1.47% 2.41% 1.81% 0.61%
0.05 4.19% 3.31% 2.02% 2.22% 1.31% 0.91%
0.1 5.11% 4.17% 2.24% 2.94% 1.97% 0.99%

Table 9 shows improvement ratios among the proposed 3 algorithms and BAS. Comparing "SCD710

vs BAS", "PCD vs BAS", and "Baseline vs BAS" performance under the same capital and the same711

stage number, we observe that the advantages of the proposed methods (SCD, PCD, and Baseline)712

over the standard regression approaches become more pronounced as the transaction factor increases.713

Besides, comparing “SCD vs Baseline" and “PCD vs Baseline" under the same capital and the same714

transaction factor but different stage numbers, the advantages of SCD and PCD over Baseline are715

amplified as the number of stages increases. This trend is consistent with the findings from the716

experiments on the production and sales problem. One interesting phenomenon is that under the717

same capital and the same transaction factor, the advantage of the proposed methods over BAS718

appears to be similar or even less obvious when the number of stages is 12 compared to when it is719

4. This observation differs from the pattern seen in the production and sales problem experiments.720

We hypothesize that this divergence may be attributable to the fundamental differences between the721

problem settings. While the production and sales problem is a pure LP, the investment problem is an722

IP with several integrality constraints. The proposed methods relax these integrality constraints and723

treat the problem as an LP for the purpose of forward and backward propagation. The gaps between724

the original IP and the relaxed LP may accumulate as the number of stages grows larger, potentially725

diminishing the advantages of the Predict+Optimize approaches.726

F.3 Nurse Rostering Problem727

Table 10 reports the mean post-hoc regrets and standard deviations across 30 simulations for all728

training methods on the nurse rostering problem. Compared among standard regression models,729

NN always performs well and achieves the best performance, while Ridge and RF also have decent730

performances.731

Table 11 shows improvement ratios among the proposed 3 algorithms and BAS. Comparing "SCD vs732

BAS", "PCD vs BAS", and "Baseline vs BAS" performance with different extra nurse payments, we733

observe that the advantages of the proposed methods (SCD, PCD, and Baseline) over the standard734

regression approaches become more pronounced as the extra nurse payment increases.735

Figure 2 shows post-hoc regret comparisons between BAS and the proposed methods (Baseline,736

SCD, and PCD) for each run. To easily read the comparisons, we again sorted all simulations by737
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Table 10: Mean post-hoc regrets and standard deviations of all methods for the nurse rostering
problem.

Extra nurse
payment 15 20 25 30

SCD 607.66±142.19 789.65±200.22 1038.29±255.42 1207.50±319.25
PCD 622.05±153.64 805.11±224.99 1048.08±281.32 1240.48±332.39
Baseline 629.35±153.67 817.60±219.47 1083.45±259.68 1290.10±371.08
NN 662.34±169.17 863.02±214.50 1144.63±305.00 1369.81±373.20
Ridge 663.57±141.49 887.63±206.36 1146.56±297.33 1371.20±320.37
k-NN 758.49±135.75 1033.88±197.22 1309.92±255.86 1562.98±298.14
CART 965.16±207.67 1303.68±280.11 1645.59±350.32 1957.13±433.46
RF 680.47±148.20 870.50±221.81 1145.32±293.18 1378.68±333.73
TOV 10611.64±1574.11 10732.32±1504.12 10893.54±1485.37 11110.73±1344.15

Table 11: Improvement ratios among Baseline, SCD, PCD, and standard regression models for the
nurse rostering problem.

Extra nurse
payment SCD VS BAS PCD VS BAS Baseline VS BAS SCD VS Baseline PCD VS Baseline SCD VS PCD

15 8.26% 6.08% 4.98% 3.45% 1.16% 2.31%
20 8.50% 6.71% 5.26% 3.42% 1.53% 1.92%
25 9.29% 8.44% 5.35% 4.17% 3.26% 0.93%
30 11.85% 9.44% 5.82% 6.40% 3.85% 2.66%

(a) Extra nurse payment = 15. (b) Extra nurse payment = 20.

(c) Extra nurse payment = 25. (d) Extra nurse payment = 30.

Figure 2: BAS/Baseline, BAS/SCD, and BAS/PCD for the nurse rostering problem.

the increasing order of the post-hoc regret ratios of BAS/SCD. Observing Figure 2, the proposed738

methods outperform BAS in most of the simulations. Since the nurse rostering problem is an IP with739

several integrality constraints, and the proposed methods just relax these constraints and treat the740

problem as an LP for the purpose of forward and backward propagation. We hypothesize that the gap741
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between the original IP and the relaxed LP may diminish the advantages of the proposed methods,742

and thus, BAS sometimes performs slightly better than the proposed methods.743

G Runtimes for the Experiments744

Table 12: Average training time (in seconds) for the three benchmarks (in seconds).

Training
time (s)

Production and sales Investment Nurse rostering
Stage num = 4 Stage num = 12 Stage num = 4 Stage num = 12 Stage num = 7

Low-profit High-profit Low-profit High-profit Capital = 25 Capital = 50 Capital = 25 Capital = 50 \
SCD 828.79±216.69 700.63±244.37 3287.99±809.72 2552.73±991.69 402.37±58.00 535.18±88.45 7734.01±1198.41 11216.01±1994.75 14949.59±3281.24
PCD 293.41±96.27 236.80±81.07 483.28±95.81 470.76±124.97 157.25±41.65 194.40±57.51 2639.72±648.22 4509.83±767.45 6801.54±1175.01
Baseline 157.72±50.85 100.09±32.50 195.42±35.03 169.58±45.62 56.04±14.73 61.49±18.30 669.01±261.78 797.61±282.70 2618.63±524.37
NN 70.58±24.78 97.60±46.17 49.24±18.24 70.81±29.81 61.41±5.28
Ridge 1.71±0.29 2.88±0.39 5.60±1.28 17.45±7.96

 1k-NN 0.98±0.96 1.03±0.24 1.92±0.62 11.35±0.99
CART 0.77±0.19 2.46±0.39 5.79±1.45 27.30±2.19
RF 24.82±1.13 91.93±1.80 358.19±4.26 1150.64±484.87

In this paper, all models are trained with Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz processors745

on Google Colab. Since the testing time of different approaches is quite similar and close to being746

negligible, here, we only show the training time of each prediction model and do not include the747

testing time. At training time, the proposed Baseline, SCD, and PCD methods need to solve the LP.748

Training for the usual NN does not involve the LP at all, and so training is much faster (but gives749

much worse results).750

There are two stopping criteria for SCD and PCD. We set the maximum iteration number of SCD and751

PCD as 5. Besides, if the difference between the post-hoc regret of two consecutive iterations is less752

than 1, we consider that the algorithm has converged. This is the second stopping criterion.753

Table 12 shows the average training time across 30 simulations for the three problems. For the754

investment problem, since the training times under different transaction fees are similar when the755

capital and the number of stages are the same, we do not report them one by one but report only756

the average. For the nurse rostering problem, since the training times under different extra nurse757

payments are similar when the numbers of stages are the same, we also do not report them one by758

one but report only the average.759

Since the proposed 3 methods require solving multiple LPs when training, their training times are760

usually longer than standard methods. But since the production and sales problem is an LP, the761

solving time of which is not too long, the training time of Baseline is around double of NN. Table 12762

also shows that SCD and PCD usually converge in 4 iterations in the production and sales problem.763

In the investment problem, the training times of Baseline are better than that of RF. The solving time764

of the OP, i.e., the difficulty of solving the OP, can largely affect the training times of the proposed765

methods. When the number of stages grows larger, the investment problem is more difficult to solve.766

Therefore, the training times of Baseline when there are 4 stages are quite comparable with that of767

NN, but the training times of Baseline when there are 12 stages are much larger than that of NN. In768

addition, when the OP becomes more complex, the number of iterations required for SCD and PCD769

convergence also increases. SCD and PCD convergence usually in 2-3 iterations when there are 4770

stages, and usually in 3-4 iterations when there are 12 stages.771

In the NRP, since the solving time of 1 NRP is large, the training times of the proposed methods772

are larger than standard regression methods, which indicates that one future research direction is the773

speed-vs-prediction accuracy tradeoffs on Multi-Stage Predict+Optimize.774

23


