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Constraint Optimization Problems (COPs)
with unknown parameters



Knapsack Problem

W1=10
U1=1

- 120

h * 3items, each with a weight w; and a value v;,
the capacity Cap is limited.

e Select items so that
e the total weight is no more than the capacity and
* maximize the total value

e Constraint Optimization Problem (COP):
/ Decision

0, the jthitem is not selected

Objective Imax X1+ 2x, + 3x3]
function =

_ s.t.10xy + 10x, + 10x; < 20
Constraints _
x; € {0,1} Vi € {1,2,3}
A constraint is a condition of an optimization
problem that the solution must satisfy.

variable {

1, the ith item is selected




Knapsack Problem

- ) * 3items, each with a weight w; and a value v;,

wy; = 10 the capacity Cap is limited.
V= 1 $ P y p

e Select items so that

w- = 10 — 10 * the total weight is no more than the capacity and
7722 =2 $ 4@» V\;33 _ * maximize the total value
.— * Constraint Optimization Problem (COP):
\ J
®

Optimal solution:
{xl = O,Xz - 1,X3 - 1}

Problem parameters




Some problem parameters may be unknown

4 . N ¢ The value v; is unknown.
wy =10 Hardness: 3

@$ [Smoothness: 3) e Select items so that

e the total weight is no more than the capacity and
* maximize the total value

* COP with Unknown Parameters:
* @:unknown parameters, e.g., 0 = {v{, vy, U3} <+

Hardness: 2

Smoothness: 4 (A: feature matrix A
e Hardness
* Smoothness p
3 3
c A=\4 2.5‘
2 4

Optimal solution:
{xl =?,XZ =?,X3 =7}



Some problem parameters may be unknown

N ¢ The value v; is unknown.

)

w, =10 Hardness: 3

@.— [Smoc)thness: 3, e Select items so that

e the total weight is no more than the capacity and
* maximize the total value

* COP with Unknown Parameters:
* @:unknown parameters, e.g., 0 = {v{, vy, U3} <+

Hardness: 2

Smoothness: 4 (A: feature matrix A
e Hardness
* Smoothness p
3 3
c A=\4 2.5‘
2 4

e Historical data: {(Al, 61), (4%,62), ..., (Ak: Hk)}

Optimal solution: L
Historical features True parameters

X1 =?,%xy =7,x, =7
{ 1 2 3 } | | 2 9 3
(aL0Y) =(|2 3|4 )




Knapsack Problem

- N ¢ Constraint Optimization Problem (COP):
Hardness: 3 maxz Vi X;
Smoothness: 3 X i
s.t. ) ;wix; < Cap
x; € {0,1} Vi € {1,2,3}

* COP with Unknown Parameters:
Unknown
Hardness 2 K’ parameters
Hard 4
araness: Smoothness: 4 maxExi
Smoothness: 2. 5 X i
- /
s.t.;wix; < Cap
Historicall data L > x; € {0,1} Vi € {1,2,3}
(4%, 6 o
* learn a prediction function f
S Optimal solution: * given current features, use f to generate
{x, =7,x;, =7,%3 =7} predicted parameters 6

* try to estimate optimal solution(s) of the
Cap = 20 COP by using 6



How to solve the problem

Predict Optimize

Machine . Constraint
. Predicted ..
Features q learning > optimization
: parameters
techniques problems

Predict+Optimize VS Classical approaches
Main difference:
error measurement

[Demirovi c et al., 2020],
[ElImachtoub and Grigas, 2022],
[Guler et al., 2022]

» solutions

Aim: good estimated
solutions of the COP

under the true
parameters




Classical approaches: predict then optimize

2 separated stage approach:
* Predict: Use standard machine learning techniques to estimate parameters independently of the COP;
* Training: find a good prediction function that can make best forecast

* Optimize: Use these estimated parameters to solve the COP



Classical approaches: predict then optimize

2 separated stage approach:
* Predict: Use standard machine learning techniques to estimate parameters independently of the COP;

e Optimize: Use these estimated parameters to solve the COP

Parameters Error measurement
Prediction A1 _
¢ function f; 107 =0512) MSE(él,H)

=(1.5-1?+(1-2)*+ (2 -13)?
= 2.25

True values - 60 =1(1,2,3)
MSE(62,0)
=(1-10)% + (2 —20)% + (3 — 30)?

Prediction = 1134

A 4

A2 _
function f, 6° = (10,20,30)

10



Classical approaches: predict then optimize

2 separated approach:

Predict: Use standard machine learning techniques to estimate parameters independently of the COP;

Optimize: Use these estimated parameters to solve the COP

¢ Prediction
function f;

True values

A 4

Prediction
function f,

A 4

Parameters
01 = (1.5,1,2)
6 = (1,2,3)

A

62 = (10,20,30)

The prediction part is
independent of the COP.

Classical approaches aim at minimizing the
difference between estimated parameters values
and true parameters values.

—> Prediction function f; is better.
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However...

the best forecast may have a poor result when employed in the COP

Parameters Estimated optimal solution
. - * (A1
¢ Prediction 1= (1512) - - —IL(L

function f; {x; =1,x, =0,x3 =1}

Knapsack
problem

True values > |9|= (1,2,3)
Prediction [ Ay
function f, " 67 =1(10,20,30)

Estimated x (61 6]
optimal value x; + 2x, + 3x3 = 4
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However...

the best forecast may have a poor result when employed in the COP

Parameters Objective value
Prediction a1 _ (A1 _
function £, 01 =(1512) | mEp ) obj(x7(0Y),6):4
IMSE 2.25 Knapsack I
problem

A 4

True values

. _ True
0 = (1,2,3) - » | obj(x*(68),60):5 |
IMSE: 1134 I
Prediction

Prediction A A _
function f, 6% = (10,20,30) " # ob](x (92),9): 5 function f,

is better

A 4

13



Predict+Optimize

Take the COP into account when doing the prediction

Prediction
function f;

True values

Prediction
function f,

Parameters Error measurement
L o1 =
0 (1.51,2) True Estimated
optimal optimal
value value
! 6 =(123) -

True Estimated
optimal optimal
value value

62 = (10,20,30)

A 4

New error measurement:

regret

[Demirovi c et al., 2019a], [Demirovi c et al., 2019b], y
[Guler et al., 2022]



Comparison

Classical approaches

Prediction
function f;

True values

A 4

Prediction
function f,

A 4

y

Parameters
61 = (1.5,1,2)
MSE: 2.25
0 =(1,2,3)
MSE: 1134

VS

Predict+Optimize

Parameters

Prediction
function f;

True values

6% = (10,20,30)

Prediction
function f,

6% = (10,20,30) |+ COP

[Demirovi c et al., 2019a], [Demirovi c et al., 201:5L9b],
[Guler et al., 2022]



Related Works

The regret function is non-differentiable, which is
unfriendly to any gradient-based learning process

All of the related works focus on how to overcome
the non-differentiability and train with the new
loss.

Methods references

Published in

Unknown

parameters in

Techniques

define the regret function and develop
a differentiable surrogate function

Smart “Predict, then Optimize™ [7] | 2017 in arXiv objective . .
by using duality theory, and a convex
surrogate loss function
seneralization Bounds in the
Predict-then-Optimize 2019 NeurlPS objective provides two bounds for SPO
Framework [6]
} . . using different ways, incliding relax
Smart Predict-and-Optimize for the grr)hl(‘l‘rl as “;'\'“ A War if'lr;in
Hard Clombinatorial 2020 AAAI objective 1€ Prolyem as we ' 85 warm-siaring
oL . : the learning and the solving, to speed
Optimization Problems [16] . .
up the computation speed of SPO
. L construct a contimious interpolation
Differentiation of Blackbox e . .. . Lerp
3 ) R 2020 ICLR. objective function to replace the original
Combinatorial Solvers [19] I -
objective function
find a suitable combinatorial
Optimizing Rank-Based Metrics vy . objective to represent the metrics,
E g . L. ¥ 2020 CVPR objective ] D . L
With Blackbox Differentiation [20)] : and apply blackbox differentiation
method for ranking
Melding the Data-Decisions construet a continnons relaxation of
Pipeline: Decision-Focused . the original problem, and use
pet . . R 2019 AAAL objective grmal p ’ . -
Learning for Combinatorial Karush- Kuhn Tucker (KKT) conditions
Optimization [24] to compute the gradient
generate a contimious surrogate for
MIPaal.: Mixed Integer Program .. the original problem by nsing cuttin
o & i 2020 AAAIT objective gl P y & &
as a Layer [9] : plane methods, and use KKT
conditions to compute the gradient
use interior point solvers to solve [P
. e instead of differentiating the KKT
Interior Point Solving for LP- s | .. . &
based prediction | opt imisation [15] 2020 NeurlPS objective conditions, use the homogeneons
) o R ) self-dunal formulation of the LP
to compute the gradient
An Investigation into Prediction compare multiple state-of-art
b Optimisation for the Knapsack 2019 CPAIOR objective methods on knapsack problems, and
Problem [3] propose two semi-direct methods
Decision Trees for Decision
-Making under the . .. utilize decision trees under the
TOE - 2020 ICML objective . .
Predict-then-Optimize : predict-then-optimize framework
Framework [&]
provide theoretical insights and
. . . . develop a novel framework that
Predict+Optimise with Ranking 1‘1.r‘1.1§(w~s to compute the optimal
Objectives: Exhaustively 2019 LICAI objective guarantees to compute t prims
. . . . parameters for a linear learning
Learning Linear Functions [4] . . .
function given any ranking
optimisation problem
provide a learning technigue
Dynamic Programming for S for predict | optimise to directly
¥ B & 2020 AAAIT objective p Hop iﬁ ¥

Predict + Optimise [5]

reason about the undetying
combinatorial optimisation problem




Related Works

What if the constraints also
contain unknown parameters?

Unknown ¥

Methods references Published in . Techniques
parameters in
define the regret function and develop
. . N . . . —_— a differentiable surrogate function
Smart “Predict, then Optimize™ [7] | 2017 in arXiv objective : i - £
by using duality theory, and a convex
surrogate loss function
Generalization Bounds in the
Predict-then-Optimize 2019 NeurlPS objective provides two bounds for SPO
Framework [6]
Smart Predict-and-Optimize for using different ways, including relax
e T - . the problem as well as warm-startin
Hard Combinatorial 2020 AAAT objective pl . - - &
Optimization Problems [16] the learning and the solving, to speed
o up the computation speed of SPO
Differentiation of Blackbox construct a contimious interpolation
C '} N ; B 1 Sol i [19] 2020 ICLR objective function to replace the original
Jombinatorial Solvers [1¢ L )
objective function
find a suitable combinatorial
Optimizing Rank-Based Metrics 2020 CVPR obiective ahjective to represent the metrics,
With Blackbox Differentiation [20] ! jective and apply blackbox differentiation
method for ranking
Melding the Data-Decisions construet a continnons relaxation of
Pipeline: Decision-Focused 2019 AAAL obiective the original problem, and use
Learning for Combinatorial ’ : Jockim Karnsh-Kuhn Tucker (KKT) conditions
Optimization [24] to compute the gradient
generate a contimious surrogate for
MIPaal.: Mixed Integer Program 9020 AAAT biecti the original problem by using cutting
objective
as a Layer [9] ’ 1 plane methods, and use KKT
conditions to compute the gradient
use interior point solvers to solve [P
Interior Point Solvine for LP instead of differentiating the KK'T
h'z.‘l;(‘d rr‘rli(‘t.i(.m ‘o fimiq'm;iou (13] 2020 NeurlPS objective conditions, use the homogeneons
ased predie . ) self-dunal formulation of the LP
to compute the gradient
An Investigation into Prediction compare multiple state-of-art
b Optimisation for the Knapsack 2019 CPAIOR objective methods on knapsack problems, and
Problem [3] propose two semi-direct methods
Decision Trees for Decision
-Making under the 2020 TCMI hiecti utilize decision trees under the
. - "ML objective . -
Predict-then-Optimize ¥ predict-then-optimize framework
Framework [&]
provide theoretical insights and
. . . . develop a novel framework that
Predict + Optimise with Ranking l‘Lr‘uf;(:(“s to compute the optimal
Objectives: Exhaustively 2019 LICAT objective guaraniees e pute b phim
Learning Linear Functions [4] parameters for a linesr learning
function given any ranking
optimisation problem
provide a learning technigue
Dynamic Programming for 2020 AAAL obiective for predict | optimise to directly
. C. _ r wtive )
Predict + Optimise [5] 1 reason about the underlying
A\ 4 combinatorial optimisation problem




If the constraints contain unknown parameters

A * Knapsack with unknown weights

V1 = 1 w
.— m;lXE.UiXi
i
S. t.zi@xi < Cap j

J Unknown parameters

in constraints

= $ ‘@’b x; € {0,1} Vi € {1,2,3}
f

* Eg.

Estimated weights: {w; = w, = w3 = 5}
[ Estimated optimal solution: infeasible}

Optimal solution:
{xl =?,x2 =?,x3 =7}

{x1 =%, =x3 =1}
(True weights: {w; = w, = w3 = 10})

* The estimated optimal solution may be
infeasible under the true parameters

18



Regret is inapplicable

* Unknown parameters appearing in constraints (more complex)

* the estimated optimal solution may be out of the true solution space

S

Estimated optimal
solution

Feasible region

* Regret: does not take feasibility into account

Regret(6,0) = | Estimated

optimal
value

inapplicable

19




Our Work: Correction Function

Some applications:

| allow solution modification after true parameters are revealed |

|

e correction function should map e Estimated optimal
(a) every feasible solution to itself and solution
(b) each infeasible solution to one in Feasible region
the feasible region — Correction function
@ Correctional
predicted solution

The space of possible correction functions :

problem and application specific

20



Case Study 1: Knapsack

* |f the weights are unknown?

= o

Stz.( < Cap
V3 =

x; € {0,1} Vi € {1,2,3}

* When the total weight of the selected
items exceeds the capacity:

* Correction function 1: remove all items

Optimal solution:

{x, =?,%, =7, x5 =7} * Correction function 2: remove the items one by

one in increasing order of values

21



Our Work: Correctional Regret

To cater for unknown parameters appearing in constraints

* Correction function:

rrection function
Correction functio Corrected

optimal solution

+ COP

Corrected ” n Penalty

Estimated

optimal solution

e Correctional regret:

CRegret(@, 9) = || IEE

term

optimal value optimal value

E.g. knapsack problem
with unknown
weights: removal fee

22



Experiment Setting

Comparison algorithms

proposed
Comparison Branch and learn Branch and learn with| Linear regression | k-nearest neighbors | Classification and | Random forest
algorithms (B&L) [Hu et al., 2022] correction (LR) (k-NN) regression tree (CART) (RF)
(B&L-C)
Category Predict+Optimize method Extension of B&L Classical regression methods
Trained by Regret Correctional regret Mean square error (MSE)
Tested by Correctional regret

23




Experiment Setting

Maximum flow

* Unknown parameters in constraints

e 2 Real-life graphs
* USANet, 24 vertices and 43 edges
* GEANT, 40 vertices and 61 edges

e Artificial and real-life datasets

Minimum cost vertex cover

* Unknown parameters in both the objective
and constraints

e 2 Real-life graphs
* ABILENE, 12 vertices and 15 edges
 GEANT, 11 vertices and 34 edges

e Artificial and real-life datasets

24



Experiment Dataset

Real life dataset

* |CON energy-aware scheduling
competition

e Also used in previous works on
Predict+Optimize

* Each parameter has 8 features

Artificial dataset
* 100 * sin(a,) * sin(a,) + 10 =
sin(as) * sin(a,)

Highly nonlinear

25



Experiment Results: M

> 0.3% smaller
correctional regret

> 259% smaller
correctional regret

aximum Flow

Artificidl Dataset Real-lif§ Dataset
USANet GEANT USANet GEANT
Size 100 300 100 300 100 300 100 300
| +27 8 34 44165 22 1+10.7 10 44+10) 1] + 3 542 34 2 4
| B&L-C 34.9+18.7 33.5x16.7 19.2+9.7 18.6+9.8 2.4+2.3 2.6x2.9 1.9+1.2 1.5+1.4
36.1+19. 34.2+16. RE 0. 7£10.6 Ax2 REA RES IS 2.6x] .
k-NN 35.9+£17.0 34.04£15.6 21.0+£11.4 19.6+10.0 5.242.6 5.7+3.0 2.7+1.6 3.4+2.0
CART 43.0+£19.1 42.8+17.8 25.4+15.3 24.3+14.9 7.7+4.0 7.8+3.7 4.6+£3.2 6.2+4.2
RF 36.6+17.8 33.6+15.9 20.9+11.6 19.3+9.4 4.7+£2.6 5.0+2.7 2.6+1.4 3.1+1.9
TOV: Average TOV + 3 37.7+36. 118.2450.4 114.5+494 | 81.8423.0 87.1+24.7 | 74.7423.0 77.2+25.0
True Optimal Value 16-24% relative error 2-3% relative error

Table 1: Mean correctional regrets and standard deviations for MFP with unknown capacities.

 B&L-C achieves the best performance in all cases.

 The performance differences among different methods are larger in the real-life dataset, and the

advantages of B&L-C are more obvious.

* All methods achieve better performance in the real-life dataset. This is consistent with how the artificial
dataset is purposefully designed to be highly non-linear, and thus more difficult to estimate.

26



Experiment Results: Minimum Cost Vertex Cover

Artificial Dataset D] Real-life Dataset
ABILENE PDH ABILENE PDH

Size 100 300 100 300 100 300 100 300

B&L 190.6+23.4 193.7+15.3 | 140.9+15.1 148+12.8 16.4+7.2 15.3+3.6 73.6+£15.6 73.6+8.5
B&L-C 186.1+23.3 190.6+13.5 | 140.4+16.5 146.5+11.3 12.245.4 11.8+£2.8 54.9+12.3 55.948.5
LR 196.1£27.9 197.7+14.6 | 149.1+£19.5 150.1+10 T60.354.3 19.313.1 69.5=17 05.2%06.8
k-nn 196.9427.8 198.6+13.4 | 147.3£23.6 149.6+11.7 32.5+8 33.1+4.5 74.8+13.3 70.5+6.7
CART 215.5+18.1 209.3+13.4 | 153.7+£21.2 160.8+12.4 25.8+£9.2 28.6+5.7 69.9+12.1 66+7.4
RF 199.2+24 197.8+15.1 148+18.5 151+9.7 26.4+7.8 27.9+4.3 69.3+14.6 65.3+8

\ Average TOV \ 582.9424.3 579.6£13.6 | 800.6+25.6 804.3+14.7 H 272.1+14.4 275.3+5.4 \ 492.9+27.9 491.2+12.8 \

Table 2: Mean correctional regrets and standard deviations for MCVC with unknown costs and edge values.

B&L-C has the best performance in all cases with the real-life dataset.

On the artificial dataset, all algorithms perform essentially the same.
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Summary

* Predict+Optimize: unknown parameters in objectives + constraints
* Challenge: estimated solutions may be infeasible
e Correction function
e Correctional regret

* Experiment results
* Maximum flow problem: unknown capacities
* Minimum cost vertex cover problem: unknown costs + edge values

Xinyi Hu, xyhu@cse.cuhk.edu.hk
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