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Abstract
Predict+Optimize, which combines machine learn-
ing and constrained optimization, tackles optimiza-
tion problems containing parameters that are un-
known at the time of solving. Prior works focus
on optimization problems with unknown objectives
but known constraints, and use the regret function
as the loss function. When the constraints are un-
known, the problem becomes more complex since
the solution solved using estimated parameters may
end up being infeasible under the true parameters.
Thus, the regret function, which does not consider
the solution feasibility, is no longer applicable. We
introduce the novel notion of correctional regret
to account for correcting infeasible estimated so-
lutions before computing the regret. Experimenta-
tion shows better performance for our proposal over
classical and state of the art approaches.

1 Introduction
In the intersection of machine learning and constrained opti-
mization, the Predict+Optimize framework tackles optimiza-
tion problems with parameters that are unknown at solving
time. The task is to i) predict the unknown parameters, then
ii) solve the optimization problem using the predicted param-
eters, such that the resulting solutions are good even under
true parameters. Traditionally, the parameter prediction uses
standard machine learning techniques, with error measures
independent of the optimization problem. Thus, the predicted
parameters may in fact lead to a low-quality solution for
the (true) optimization problem despite being “high-quality”
for the error metric. The Predict+Optimize framework uses
the more effective regret function [Demirović et al., 2019a;
Elmachtoub and Grigas, 2022; Guler et al., 2022] as the error
metric, capturing the difference in objective (computed under
the true parameters) between the estimated and true optimal
solutions. However, the regret function is usually not differ-
entiable, and gradient-based methods do not apply.

Prior works have focused on the regime where the
optimization problems contain an unknown objective but
known constraints, and proposed ways to overcome the non-

differentiability of the regret. They can be roughly divided
into two approaches: approximation and exact. The former
tries to compute the (approximate) gradients of (approxima-
tions of) the regret function. Elmachtoub et al. [2022] pro-
pose a differentiable surrogate function for the regret func-
tion, while Wilder et al. [2019] relax the integral objective
in constrained optimization and solve a regularized quadratic
programming problem. Mandy and Guns [2020] focus on
mixed integer linear programs and propose an interior point
based approach. While novel, approximation approaches are
not always reliable. Exact approaches exploit the structure
of optimization problems to train models without comput-
ing gradients. Demirović et al. [2019b] investigate prob-
lems with the ranking property and propose a large neigh-
borhood search method to learn a linear prediction function.
Demirović et al. [2020] further extend the method to enable
Predict+Optimize for problems amenable to tabular dynamic
programming (DP), which uses a coordinate descent method
to train linear models for prediction. This work is extended to
the the Branch & Learn framework [Hu et al., 2022], where
problems solvable with a recursive or iterative algorithm can
be tackled in Predict+Optimize. Guler et al. [2022] pro-
poses a divide and conquer algorithm, extending the work of
Demirović et al. [2020] in a different manner so that the algo-
rithm can deal with problems with linear objective function.

Despite the variety of approaches, Predict+Optimize on
optimization problems containing both an unknown objective
and unknown constraints remains uncovered. The main chal-
lenge is that the solution solved using estimated parameters
may end up being infeasible under the true parameters—an
issue inherent with uncertainty in constraints. We therefore
focus on applications where, after the true parameters become
known, the solved solution can be modified (perhaps in a re-
stricted manner) into a feasible solution. The regret function
designed for fixed solution space is not applicable in this sit-
uation, and we propose a novel correctional regret loss func-
tion. In this setting, an infeasible solution is first converted
into a feasible estimation (with respect to true parameters),
and then the error of prediction is measured by the objective
difference between the true optimal solution and the feasible
estimated solution. We give case studies on how to define cor-
rectional regret on three different combinatorial optimization



problems. Similar to the original regret function, correctional
regret is usually non-differentiable. We therefore incorporate
the correctional regret into the Branch & Learn framework
[Hu et al., 2022], which can tackle unknown parameters in
both objectives and constraints. The experiment results on
the maximum flow problem (MFP) and the minimum cost
vertex cover (MCVC) problem demonstrate the superior so-
lution quality of the proposed method.

2 Problem Description
Without loss of generality, an optimization problem is to find
x∗ = argminx obj(x) s.t. C(x), where x ∈ Rd is a vector
of decision variables, obj : Rd → R is a function mapping x
to a real objective value which is to be minimized, and C is a
set of constraints over x. Thus, x∗ is an optimal solution and
obj(x∗) is the optimal value.

A parameterized optimization problem (Para-OP) P (θ) is
an extension of the optimization problem P :

x∗(θ) = argmin
x

obj(x, θ) s.t. C(x, θ)

where θ ∈ Rt is a vector of parameters. Both the objective
and constraints depend on θ. When the parameters are known,
a Para-OP is just an optimization problem.

In Predict+Optimize [Demirović et al., 2020], the true pa-
rameters θ ∈ Rt for a Para-OP are unknown at solving time,
and estimated parameters θ̂ are used instead. Suppose each
parameter is estimated by m features. The estimation will
rely on a machine learning model trained over n observa-
tions of a training data set {(A1, θ1), . . . , (An, θn)}, where
Ai ∈ Rt×m is a feature matrix for θi, so as to yield a predic-
tion function f : Rt×m → Rt for parameters θ̂ = f(A).

The quality of the estimated parameters θ̂ is measured by
the regret function, which is the objective difference between
the true optimal solution x∗(θ) and the estimated solution
x∗(θ̂) under the true parameters θ. Formally, we define the
regret function Regret(θ̂, θ) : Rt × Rt → R≥0 to be:

Regret(θ̂, θ) = obj(x∗(θ̂), θ)− obj(x∗(θ), θ)

where obj(x∗(θ̂), θ) is the estimated optimal value and
obj(x∗(θ), θ) is the true optimal value. Following the empir-
ical risk minimization principle, Elmachtoub, Liang and Mc-
Nellis [Elmachtoub et al., 2020] choose the prediction func-
tion to be the function f from the set of models F attaining
the smallest average regret over the training data:

f∗ = argmin
f∈F

1

n

n∑
i=1

Regret(f(Ai), θi) (1)

When constraints contain unknown parameters, the feasi-
ble region is only approximated and the estimated solution
may be infeasible when the true parameters are used. There-
fore, the regret function, which does not take feasibility into
account, becomes inapplicable in this case.

3 Correctional Regret
Since the estimated solution may be out of the true solution
space, the core idea is to design a correction function fc that

maps (a) every feasible solution to itself and (b) each infeasi-
ble solution to one in the feasible region. We define correc-
tional regret CReg(θ̂, θ) : Rt × Rt → R≥0 as:

CReg(θ̂, θ) = obj(fc(x
∗(θ̂)), θ)− obj(x∗(θ), θ) (2)

The definition of fc is problem and application specific.
Similar to the regret function and following the empirical

risk minimization principle, we choose the prediction func-
tion to be the function f from the set of models F attaining
the smallest average correctional regret over the training data:

f∗ = argmin
f∈F

1

n

n∑
i=1

CReg(f(Ai), θi) (3)

We give case studies on how to define correctional regret
on three combinatorial optimization problems as follows.

0-1 Knapsack We first demonstrate, using the example of
0-1 knapsack problem with unknown costs, how a correction
function can be defined. Consider a project funding problem,
which gives a set of projects, each of which needs a cost to
conduct and can publish some papers as profit. The aim is to
maximize the total profit under a budget, which is an instance
of 0-1 knapsack. If the profits for the projects are given but
the costs are unknown, we need to consider a case where the
projects are selected with the estimated costs, but the total
true costs might exceed the available funding.

One trivial correction function is to fund no projects if the
total (true) funding required exceeds the budget. A more use-
ful correction function is to remove the adopted projects in
the estimated solution one by one in increasing order of profit
values until the available funding is sufficient.

Maximum Flow The maximum flow problem (MFP) with
unknown edge capacities is another example demonstrating
what a correction function can be when the unknown param-
eters are only in constraints. Given a directed graph, where
at most one edge exists between any two vertices. Each edge
on the graph has a non-negative capacity. The aim is to find
the largest possible flow sent from the source s to the termi-
nal t under the constraints that the flow on each edge must be
smaller than or equal to the edge capacity. The edge capaci-
ties are unknown parameters.

We need to consider a case where the path and flow com-
puted with the estimated capacities might exceed the true
capacities of some edges. One correction function is to re-
compute the blocking flows of the chosen paths with the true
capacities, and then augment the paths one by one with the
re-computed blocking flows. The ordering of path augmenta-
tion is important but computing the best order requires O(n!)
time. We can adopt an approximate method: the paths are
augmented according to the order of the path augmentation
of the Edmonds-Karp algorithm.

Minimum Cost Vertex Cover Our last example is a vari-
ant of the minimum cost vertex cover (MCVC) problem,
where we show how to define a correction function when
having unknown parameters in both the objective and con-
straints. Given a graph G = (V,E), there is an associated
cost c ∈ R|V | denoting the cost of picking each vertex, as



Artificial Dataset Real-life Dataset
USANet GÉANT USANet GÉANT

Size 100 300 100 300 100 300 100 300
B&L 58.6±27.8 34.4±16.5 22.1±10.7 19.4±10.1 3.7±3.0 3.5±2.7 2.3±1.6 2.2±1.6
B&L-C 34.9±18.7 33.5±16.7 19.2±9.7 18.6±9.8 2.4±2.3 2.6±2.9 1.9±1.2 1.5±1.4
LR 36.1±19.4 34.2±16.9 20.5±9.7 19.7±10.6 4.4±2.8 4.5±2.5 2.3±1.5 2.6±1.9
k-NN 35.9±17.0 34.0±15.6 21.0±11.4 19.6±10.0 5.2±2.6 5.7±3.0 2.7±1.6 3.4±2.0
CART 43.0±19.1 42.8±17.8 25.4±15.3 24.3±14.9 7.7±4.0 7.8±3.7 4.6±3.2 6.2±4.2
RF 36.6±17.8 33.6±15.9 20.9±11.6 19.3±9.4 4.7±2.6 5.0±2.7 2.6±1.4 3.1±1.9
Average TOV 140.7±38.7 137.7±36.7 118.2±50.4 114.5±49.4 81.8±23.0 87.1±24.7 74.7±23.0 77.2±25.0

Table 1: Mean correctional regrets and standard deviations for MFP with unknown capacities.

Artificial Dataset Real-life Dataset
ABILENE PDH ABILENE PDH

Size 100 300 100 300 100 300 100 300
B&L 190.6±23.4 193.7±15.3 140.9±15.1 148±12.8 16.4±7.2 15.3±3.6 73.6±15.6 73.6±8.5
B&L-C 186.1±23.3 190.6±13.5 140.4±16.5 146.5±11.3 12.2±5.4 11.8±2.8 54.9±12.3 55.9±8.5
LR 196.1±27.9 197.7±14.6 149.1±19.5 150.1±10 16.3±4.8 19.3±3.1 69.5±12 65.2±6.8
k-nn 196.9±27.8 198.6±13.4 147.3±23.6 149.6±11.7 32.5±8 33.1±4.5 74.8±13.3 70.5±6.7
CART 215.5±18.1 209.3±13.4 153.7±21.2 160.8±12.4 25.8±9.2 28.6±5.7 69.9±12.1 66±7.4
RF 199.2±24 197.8±15.1 148±18.5 151±9.7 26.4±7.8 27.9±4.3 69.3±14.6 65.3±8
Average TOV 582.9±24.3 579.6±13.6 800.6±25.6 804.3±14.7 272.1±14.4 275.3±5.4 492.9±27.9 491.2±12.8

Table 2: Mean correctional regrets and standard deviations for MCVC with unknown costs and edge values.

well as edge values ℓ ∈ R|E|, one real value for each edge.
Both the costs and edge values are unknown parameters. The
goal is to pick a subset of vertices, minimizing the total cost,
subject to the constraint that for all edges except the one with
the smallest edge value, the edge needs to be covered, namely
at least one of the two vertices on the edge needs to be picked.
This problem is relevant in applications such as building pub-
lic facilities. For example, the graph being a road network
with edge values being traffic flow, and we wish to build
speed cameras at intersections with minimum cost, while cov-
ering all the roads except the one with the least traffic.

The edge value estimation might cause an edge to be
wrongly removed. The selected vertices might not cover all
the edges that need to be covered. If there is an edge not cov-
ered by the selected vertices, a correction function is to add
both of the edge endpoints to the selection, and incur also the
costs of these two vertices.

4 Experimental Evaluation
In this section, we present computational results of both arti-
ficial and real-life data experiments wherein we empirically
examine the quality of the correctional regret function for
training prediction models. Following prior works on Pre-
dict+Optimize [Demirović et al., 2019a; Elmachtoub and Gri-
gas, 2022], we focus on linear prediction models. We com-
pare the performance of 6 different methods:

1. Branch and learn (B&L) [Hu et al., 2022], an exact Pre-
dict+Optimize method, which train the prediction mod-
els with the regret function.

2. Branch and learn with correction (B&L-C), an extension
of B&L, which train the prediction models with the cor-
rectional regret function.

3. 4 classical regression methods: linear regression (LR),
k-nearest neighbors (k-NN), classification and regres-
sion tree (CART) and random forest (RF) [Friedman et
al., 2001], all of which train the prediction models with
their classical loss function.

We conduct experiments on two of the optimization prob-
lems mentioned in Section 3: MFP and MCVC, on real-life
graphs. For MFP, we use USANet [Lucerna et al., 2009], with
24 vertices and 43 edges, and GÉANT [LLC, 2018], with 40
vertices and 61 edges. Since MCVC is an NP-hard prob-
lem, we use two smaller graphs from the Survivable Network
Design Library [Orlowski et al., 2007]: ABILENE, with 12
vertices and 15 edges, and PDH, with 11 vertices and 34
edges. In MFP, the edge capacities are unknown parameters.
In MCVC, both the costs and edge values are unknown pa-
rameters.

We run 30 simulations for each problem configuration.
In each simulation, we build datasets consisting of n ∈
{100, 300} pairs of (feature matrix, parameters). In the artifi-
cial and real-life datasets, each parameter has 4 and 8 features
respectively. The real-life data are from the ICON energy-
aware scheduling competition [Simonis et al., 2014] and also
appear in previous works on Predict+Optimize (Demirović et
al. 2019a; 2020). We use 70% of each of the datasets for
training and 30% for testing.

Tables 1 and 2 show the mean correctional regrets and stan-
dard deviations in the experiment of MFP and MCVC respec-
tively. Mean correctional regret ± std is the metric used to
demonstrate the performance. At the bottom of the tables, we
report also the average true optimal values (TOV) to com-
pare the relative error on the artificial and real-life datasets.
Note that B&L performs learning with the regular regret but
the testing is with the correctional regret, while B&L-C uses
correctional regret in both learning and testing.

As shown in Table 1, B&L-C achieves the best perfor-
mance in all cases. On the artificial dataset, B&L-C obtains
2.79%-40.44% (n = 100 and 0.30%-21.73% (n = 300)
smaller correctional regret in USANet, and 6.34%-24.41%
(n = 100) and 3.63%-23.46% (n = 300) smaller cor-
rectional regret in GÉANT than any other methods. The
performance differences among different methods are larger
in the real-life dataset, and the advantages of B&L-C are
more obvious. Contrasting other methods, B&L-C obtains



35.14%-68.83% (n = 100) and 25.71%-66.67% (n = 300)
smaller correctional regret in USANet, and 17.39%-58.70%
(n = 100) and 31.82%-75.81% (n = 300) smaller correc-
tional regret in GÉANT. Besides, we notice that all methods
achieve better performance in the real-life dataset. For ex-
ample, B&L-C achieves roughly 16-24% relative error in the
artificial dataset, and roughly 2-3% relative error in the real-
life dataset. This is consistent with how the artificial dataset is
purposefully designed to be highly non-linear, and thus more
difficult to estimate.

Table 2 shows the results for MCVC. B&L-C has the best
performance in all cases with the real-life dataset, achieving
roughly 4-11% relative error compared to the TOV. Contrast-
ing other methods, B&L-C obtains 25.15%-62.46% (n =
100) and 22.88%-64.35% (n = 300) smaller correctional
regret in ABILENE, and 20.78%-26.60% (n = 100) and
14.26%-24.05% (n = 300) smaller correctional regret in
PDH. On the artificial dataset, all algorithms perform essen-
tially the same, achieving roughly 32% relative error in ABI-
LENE and roughly 18% relative error in PDH.

5 Concluding Remarks
We consider the problem of solving optimization problems
with unknown parameters in both objective and constraints.
Since the regret function does not take solution feasibility into
account, to cater to the regime that the solution solved using
estimated parameters may be infeasible under the true param-
eters, we propose a new loss function, called correctional re-
gret. Case studies on how to define correctional regret on
3 different optimization problems: 0-1 knapsack, MFP, and
MCVC are provided. Experiment results on MFP and MCVC
show better performance for our proposal over classical and
state of the art approaches. One bottleneck is that the pro-
posed correctional regret is problem specific and handcrafted.
One potential research direction is to explore more automatic
ways to create the correctional regret functions for a new opti-
mization problem or define a more general correctional regret
to fit with more general problems.
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[Demirović et al., 2019a] Emir Demirović, Peter J Stuckey,
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