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A Proofs

A.1 Proofs for Packing LPs

Lemma 1 Let x∗(θ̂) denote the estimated optimal solution of the packing LP shown in
(4), x∗

corr(θ̂, θ) = λx∗(θ̂) be the correction function shown in (5). Suppose that at the
optimal λ of (5), the ith inequality constraint Gi is tight, namely G⊤

i (λx
∗(θ̂)) = hi.

Then, we have
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As a corollary, we have
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x∗(θ̂)G⊤
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Proof. Since the ith inequality constraint Gi is tight, we have:

λ

n∑
j=1

Gijx
∗(θ̂)j = hi (1)

The implicit differentiation of Equation 2 with respect to x∗(θ̂) is:

∂

∂x∗(θ̂)
(λ

n∑
j=1

Gijx
∗(θ̂)j) =

∂hi

∂x∗(θ̂)

Since x∗(θ̂) is a vector, differentiation on the lth variable is:

∂

∂x∗(θ̂)l
(λ

n∑
j=1

Gijx
∗(θ̂)j) =

∂hi

∂x∗(θ̂)l

where
∂

∂x∗(θ̂)l
(λ

n∑
j=1

Gijx
∗(θ̂)j) =

∂λ

∂x∗(θ̂)l
G⊤

i x
∗(θ̂) + λGil

1



Since ∂hi

∂x∗(θ̂)l
= 0, we can obtain:

∂λ

∂x∗(θ̂)
= − λ

G⊤
i x

∗(θ̂)
G⊤

i .

Since ∂x∗
corr(θ̂,θ)
∂λ = x∗(θ̂), ∂x∗

corr(θ̂,θ)

∂x∗(θ̂)

∣∣∣
λ
= λI , the gradient of the corrected opti-

mal solution with respect to the predicted optimal solution is:
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Lemma 2 Consider the LP relaxation (8), defining x∗ as a function of c,G and h.
Then, under this definition of x∗,

∂x∗

∂h
= −fxx(x

∗)−1fhx(x
∗)

where fxx denotes the matrix of second derivatives of f with respect to different coor-
dinates of x, and similarly for other subscripts, and explicitly:

fxkxj (x) =

{
−µx−2
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2
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2, j = k

−µ
∑p

i=1 GijGik/(hi −G⊤
i x)

2, j ̸= k

and
fhℓxj (x) = µGℓj/(hℓ −G⊤

ℓ x)
2

Proof. Since x∗ = argmaxx f(x, c,G, h) is an optimum, fx(x∗) = ∂f(x)
∂x

∣∣∣
x=x∗

= 0.
Thus,

∂

∂h
fx(x

∗) = 0

By the chain rule,
∂

∂h
fx(x

∗) = fhx(x
∗) + fxx(x

∗)
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∂h
Rearranging the aboved equation, we can obtain:
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Lemma 3 Consider the LP relaxation (8), defining x∗ as a function of c,G and h.
Then, under this definition of x∗,

∂x∗

∂G
= −fxx(x

∗)−1fGx(x
∗)

where fxx denotes the matrix of second derivatives of f with respect to different coor-
dinates of x, and similarly for other subscripts, and explicitly:

fxkxj
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Proof. Since x∗ = argmaxx f(x, c,G, h) is an optimum, fx(x∗) = ∂f(x)
∂x

∣∣∣
x=x∗

= 0.
Thus,
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∂G
fx(x

∗) = 0

By the chain rule,
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fx(x
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Rearranging the aboved equation, we can obtain:
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A.2 Proofs for Covering LPs

Lemma 4 Let x∗(θ̂) denote the estimated optimal solution of the covering LP shown in
(9), x∗

corr(θ̂, θ) = λx∗(θ̂) be the correction function shown in (10). Suppose that at the
optimal λ of (10), the ith inequality constraint Gi is tight, namely G⊤

i (λx
∗(θ̂)) = hi.

Then, we have
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As a corollary, we have
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Proof. Since the ith inequality constraint Gi is tight, we have:

λ

n∑
j=1

Gijx
∗(θ̂)j = hi (2)

The implicit differentiation of Equation 2 with respect to x∗(θ̂) is:

∂
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Since x∗(θ̂) is a vector, differentiation on the lth variable is:
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Since ∂hi

∂x∗(θ̂)l
= 0, we can obtain:
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∂λ = x∗(θ̂), ∂x∗
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mal solution with respect to the predicted optimal solution is:
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Lemma 5 In the context of covering LP, consider the LP relaxation in the following
form:

x∗ = argmin
x

c⊤x− µ

[
d∑

i=1

ln(xi)−
p∑

i=1

ln(G⊤
i x− hi)

]
(3)

Defining x∗ as a function of c,G and h. Then, under this definition of x∗,

∂x∗

∂h
= −fxx(x

∗)−1fhx(x
∗)
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where fxx denotes the matrix of second derivatives of f with respect to different coor-
dinates of x, and similarly for other subscripts, and explicitly:

fxkxj (x) =

{
µx−2

j + µ
∑p

i=1 G
2
ij/(hi −G⊤

i x)
2, j = k

µ
∑p

i=1 GijGik/(hi −G⊤
i x)

2, j ̸= k

and
fhℓxj (x) = −µGℓj/(hℓ −G⊤

ℓ x)
2

Proof. Since x∗ = argminx f(x, c,G, h) is an optimum, fx(x∗) = ∂f(x)
∂x
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Thus,
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By the chain rule,
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Rearranging the aboved equation, we can obtain:
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Lemma 6 In the context of covering LP, consider the LP relaxation in the following
form:

x∗ = argmin
x

c⊤x− µ

[
d∑

i=1

ln(xi)−
p∑

i=1

ln(G⊤
i x− hi)

]
(4)

Defining x∗ as a function of c,G and h. Then, under this definition of x∗,

∂x∗

∂G
= −fxx(x

∗)−1fGx(x
∗)

where fxx denotes the matrix of second derivatives of f with respect to different coor-
dinates of x, and similarly for other subscripts, and explicitly:
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Proof. Since x∗ = argmaxx f(x, c,G, h) is an optimum, fx(x∗) = ∂f(x)
∂x

∣∣∣
x=x∗
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By the chain rule,
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∗)
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Rearranging the aboved equation, we can obtain:

∂x∗
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= −fxx(x

∗)−1fGx(x
∗)

where

fxkxj (x) =

{
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∑p
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i x)
2, j = k

µ
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B Hyperparameters of the Experiments
Here are the final hyperparameter choices in the three problems: the maximum flow
transportation problem, the alloy production problem, and the fractional knapsack
problem.

Model Hyperaprameters
Proposed optimizer: optim.Adam; learning rate: 10−5; µ = 10−3; epochs=6
k-NN k=5
RF n estimator=100
NN optimizer: optim.Adam; learning rate: 10−3; epochs=6

Table 1: Hyperparameters of the experiments on the maximum flow transportation problem.

Model Hyperaprameters
Proposed optimizer: optim.Adam; learning rate: 5−6; µ = 10−3; epochs=8
k-NN k=5
RF n estimator=100
NN optimizer: optim.Adam; learning rate: 10−3; epochs=8

Table 2: Hyperparameters of the experiments on the alloy production problem.

C Detailed Experimental Results
This section shows the detailed experimental results on our three benchmarks: the
maximum flow transportation problem, the alloy production problem, and the fractional
knapsack problem.
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Model Hyperaprameters
Proposed optimizer: optim.Adam; learning rate: 10−7; µ = 10−3; epochs=8
k-NN k=5
RF n estimator=100
NN optimizer: optim.Adam; learning rate: 10−3; epochs=8

Table 3: Hyperparameters of the experiments on the fractional knapsack problem.

C.1 Maximum Flow Transportation Problem
This section shows the experiment results of the maximum flow transportation problem.

Tables 4 and 5 report the mean post-hoc regrets and standard deviations across 10
runs, and the mean square errors (MSE) and standard deviations across 10 runs for
each approach on the maximum flow transportation problem with unknown capacities
respectively. We showed these as box plots in the main paper, but here in the appendix
we present also the numerical values.

Table 4 shows that the proposed method achieves the best performance in all cases.
We also report the average True Optimal Values (TOV) in the last column of Table 4 for
reference. The proposed method achieves 11.49% relative error on POLSKA, 16.23%
relative error on USANet, and 10.28% relative error on GÉANT.

Table 5 shows the numerical values of the MSE of the various methods in the max-
flow experiment. Unsurprisingly, ridge regression achieves the best performance in all
of the cases since it is explicitly designed to learn in ℓ2 error, while RF always achieves
the second best performance. We mentioned in the main paper that the MSE for our
method is drastically higher than the other methods, and we gave justification as to
why it is related to the fact that the penalty factor is zero in this experiment. Here, we
give a scatterplot (Figure 1) of the norm of the predicted parameters versus the true
parameters, across all the methods.

As we can see in Figure 1, the predicted parameters values of the proposed method
are several orders of magnitude higher than the true parameters values. The explanation
of this phenomenon is given in the main paper.

PReg Proposed Ridge k-NN CART RF NN TOV
POLSKA 10.00±0.67 11.20±0.73 14.39±0.83 16.65±1.06 12.30±0.90 12.18±1.08 88.66±1.10
USANet 16.64±1.34 19.52±1.16 22.89±1.58 24.15±1.51 22.27±1.34 18.62±1.23 96.22±1.38
GÉANT 10.84±1.10 12.47±1.14 15.13±1.08 17.01±1.59 12.52±1.19 12.05±1.13 98.71±1.98

Table 4: Mean post-hoc regrets and standard deviations for the maximum flow transportation
problem.

MSE Proposed Ridge k-NN CART RF NN
POLSKA 1.45E+04±2.63E+04 290.75±127.31 363.13±120.51 474.00±145.07 309.94±123.44 324.38±132.49
USANet 1.76E+04±2.20E+04 755.54±90.39 913.79±91.48 1626.40±195.31 779.04±83.86 903.86±105.96
GÉANT 1.62E+04±2.58E+04 700.35±72.66 842.45±75.78 1484.84±203.11 704.96±76.64 828.18±95.18

Table 5: Mean square errors and standard deviations for the maximum flow transportation prob-
lem.
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Figure 1: Groundtruth vs Predictions.

C.2 Detailed Experiment Results of the Alloy Production Problem
This section shows the experiment results of the alloy production problem, including
the brass and the titanium-alloy.

Tables 6 and 7 report the mean post-hoc regrets and standard deviations across 10
runs, and the mean square errors (MSE) and standard deviations across 10 runs for each
approach on the alloy production problem with unknown metal concentrations.

Tables 6 shows that, when the penalty factor is 0, our method improves the solution
quality substantially in both of the two settings, obtaining at least 38.67% smaller post-
hoc regret than the other methods in brass production, and at least 30.73% smaller
post-hoc regret in titanium-alloy production. When the penalty factor is non-zero as
given in the main paper, our method obtains at least 7.80%, 3.99%, 3.24%, and 6.56%
smaller post-hoc regret respectively in brass production, and at least 9.65%, 7.30%,
3.14%, and 12.82% smaller post-hoc regret respectively in titanium-alloy production.
The results in both of the two settings suggest that the advantages of the proposed
method on solution quality first decreases and then increases as the penalty factor σ
grows. The average True Optimal Values (TOV) are reported in the last column of
Table 6. The relative errors of all the methods grow larger when the penalty factor
grows larger. For example, the relative errors of the proposed method are 11.77%,
20.77%, 26.57%, 34.34%, and 47.03% on brass production when the penalty factors
are all zero, or are sampled from [0.25±0.015], [0.5±0.015], [1.0±0.015], [2.0±0.015]
respectively.

MSE of the predicted parameters across different methods are reported for refer-
ence in Table 7. The analysis of Table 7 is given in the main paper.

C.3 Detailed Experiment Results of the Fractional Knapsack Prob-
lem

This section shows the experiment results of the capacity of 50, 100, 150, and 200 in
the fractional knapsack problem.

Tables 8 and 9 report the mean post-hoc regrets and standard deviations across 10
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PReg Proposed Ridge k-NN CART RF NN TOVAlloy Penalty factor

Brass

0 37.66±4.52 61.93±3.17 65.68±5.76 87.57±8.83 61.40±2.96 61.46±6.69

312.02±6.94
0.25±0.015 68.16±6.26 75.16±4.48 80.11±7.85 109.94±10.04 74.11±4.14 73.93±6.07
0.5±0.015 82.91±5.45 88.36±6.24 94.52±10.19 132.24±11.59 86.77±5.81 86.36±6.16
1±0.015 107.64±6.85 114.80±10.30 123.37±15.08 176.91±15.55 112.16±9.69 111.25±8.31
2±0.015 150.47±12.99 167.64±18.69 181.05±25.29 266.19±24.29 162.91±17.65 161.03±15.46

Titanium-alloy

0 4.07±0.75 6.15±0.67 6.51±0.50 7.95±0.64 5.93±0.63 5.87±0.66

30.27±0.54
0.25±0.015 6.45±0.81 7.54±0.81 8.03±0.59 10.05±0.67 7.22±0.75 7.14±0.79
0.5±0.015 7.90±0.561 8.92±0.96 9.56±0.69 12.15±0.73 8.53±0.88 8.52±0.90
1±0.015 10.73±0.81 11.69±1.28 12.59±0.92 16.34±0.87 11.12±1.16 11.08±1.19
2±0.015 14.17±1.31 17.23±1.92 18.69±1.41 24.72±1.24 16.32±1.75 16.25±1.72

Table 6: Mean post-hoc regrets and standard deviations for the alloy production problem.

MSE Proposed Ridge k-NN CART RF NNAlloy Penalty factor

Brass

0 395.81±331.56

39.33±0.64 43.68±0.92 73.98±1.74 37.43±0.40 37.80±0.47
0.25±0.015 168.27±38.07
0.5±0.015 37.33±0.58
1±0.015 36.97±0.56
2±0.015 38.22±2.37

Titanium-alloy

0 301.41±213.73

38.93±0.32 43.92±0.53 73.82±0.47 37.51±0.33 36.60±0.26
0.25±0.015 48.23±7.95
0.5±0.015 44.69±5.74
1±0.015 39.00±2.63
2±0.015 45.28±4.28

Table 7: Mean square errors and standard deviations for the alloy production problem.

runs, and the mean square errors (MSE) and standard deviations across 10 runs for each
approach on the fractional knapsack problem with unknown prices and weights.

Observing Table 8, the performance of the proposed method is at least as good
as other classical approaches when the capacity is 50, 100, or 150, and is consistent
better than others when the capacity is 200. The relative errors of all the methods grow
smaller when the capacity grows larger, for example, the relative errors of the proposed
method are around 38-49%, 29-37%, 20-28%, 10-18% when the capacity is 50, 100,
150, and 200 respectively.

MSE of the predicted parameters across different methods are reported for refer-
ence in Table 9. The analysis of Table 9 is given in the main paper.

D Runtime Analysis
Table 10 shows the average runtime across 10 simulations for different optimization
problems. In the alloy production problem and the fractional knapsack problem, the
runtimes of the proposed method are comparable to NN, and are much better than RF.
In the maximum flow transportation problem, the runtimes of the proposed method are
comparable to NN in POLSKA and GÉANT, but the runtime of the proposed method
is large in USANet. The reason is that we use the formulation where the decision
variables each correspond to a simple path from the source to the sink. Thus, when the
number of paths is large (the number of paths in USANet is 242), the number of the
decision variables of the LP is large and the LP requires more time to be solved.
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PReg Proposed Ridge k-NN CART RF NN TOVCapacity Penalty factor

50

0 35.36±0.51 38.00±0.89 36.95±1.04 35.53±0.71 37.90±0.65 39.75±1.18

90.79±0.46
0.25±0.015 38.17±0.76 39.17±0.86 38.46±0.96 38.85±0.75 38.87±0.58 40.51±1.03
0.5±0.015 39.57±0.85 40.33±0.83 39.97±0.90 42.16±0.82 39.85±0.53 41.26±0.90
1.0±0.015 41.90±0.85 42.65±0.82 42.99±0.84 48.80±1.04 41.99±0.47 42.77±0.71
2.0±0.015 44.92±0.91 47.30±0.90 49.03±1.00 62.08±1.63 45.71±0.63 45.79±0.86

100

0 45.66±0.66 49.52±1.29 48.20±1.31 48.08±0.75 49.85±1.31 52.19±1.84

156.46±0.79
0.25±0.015 49.97±0.86 51.12±1.22 50.38±1.14 51.88±0.71 51.19±1.23 53.25±1.56
0.5±0.015 52.27±0.66 52.73±1.17 52.36±1.08 55.66±0.75 52.53±1.15 54.31±1.32
1.0±0.015 55.71±1.12 55.93±1.15 56.23±0.98 63.25±1.01 55.74±0.63 56.44±1.05
2.0±0.015 58.88±0.79 62.35±1.36 64.25±0.97 78.42±1.82 60.57±0.93 60.69±1.66

150

0 42.01±0.37 47.56±1.08 46.16±1.13 46.91±0.67 48.09±0.97 49.78±2.02

207.92±0.99
0.25±0.015 46.59±0.23 49.37±1.02 48.37±1.04 50.49±0.66 49.68±0.87 51.08±1.58
0.5±0.015 50.25±0.59 51.20±0.98 50.58±0.97 54.07±0.74 51.27±0.79 52.38±1.19
1.0±0.015 54.07±0.66 54.83±1.01 54.99±0.95 61.23±1.07 54.44±0.69 54.97±0.86
2.0±0.015 58.40±0.63 62.11±1.38 63.81±1.31 75.55±1.96 60.78±0.84 60.54±2.15

200

0 25.70±0.36 33.07±0.98 32.73±0.92 33.18±0.88 33.63±0.84 34.67±2.13

246.86±1.20
0.25±0.015 31.50±0.50 34.91±0.92 34.91±0.89 36.36±0.83 35.33±0.80 36.19±1.55
0.5±0.015 35.08±0.69 36.76±0.90 37.10±0.91 39.55±0.89 37.03±0.81 37.71±1.09
1.0±0.015 39.54±0.45 40.45±0.98 41.47±1.06 45.92±1.22 40.42±0.92 40.76±1.20
2.0±0.015 44.59±0.55 47.83±1.44 50.22±1.66 58.65±2.22 47.20±1.39 46.85±3.58

Table 8: Mean post-hoc regrets and standard deviations for the fractional knapsack problem.

MSE Proposed Ridge k-NN CART RF NNCapacity Penalty factor

50

0 190.05±3.89

75.40±0.65 83.47±0.77 140.51±1.75 72.04±0.73 71.66±0.58

0.25±0.015 79.75±2.33
0.5±0.015 79.52±2.69
1.0±0.015 75.30±1.20
2.0±0.015 72.88±1.31

100

0 162.95±22.35
0.25±0.015 83.28±3.32
0.5±0.015 77.57±1.62
1.0±0.015 72.28±1.08
2.0±0.015 71.57±0.58

150

0 161.92±22.60
0.25±0.015 80.33±2.05
0.5±0.015 80.96±1.98
1.0±0.015 75.39±1.15
2.0±0.015 71.35±0.66

200

0 151.91±35.18
0.25±0.015 79.12±3.26
0.5±0.015 75.40±1.50
1.0±0.015 70.62±1.03
2.0±0.015 71.58±0.66

Table 9: Mean square errors and standard deviations for the fractional knapsack problem.

Maximum flow transportation Alloy production Fractional knapsack
Runtime(s) POLSKA USANet GÉANT Brass Titanium-alloy Capacity=50 Capacity=100 Capacity=150 Capacity=200
Proposed 18.65 132.22 15.48 228.00 331.38 131.49 132.89 139.44 132.37
Ridge <1 <1 <1 20.22 56.89 22.33
k-NN <1 <1 <1 25.14 70.22 26.00
CART <1 <1 <1 30.33 94.89 34.83
RF 4.11 11.00 11.89 959.50 2552.25 1034.07
NN 10.33 12.82 13.89 212.22 321.11 135.80

Table 10: Average runtime (in seconds) for the maximum flow transportation, alloy production,
and fractional knapsack problems.
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